|
--- |
|
|
|
|
|
{} |
|
--- |
|
# Kosmos-2: Grounding Multimodal Large Language Models to the World |
|
|
|
<a href="https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><figure><img src="https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="384"><figcaption><b>[An image of a snowman warming himself by a fire.]</b></figcaption></figure></a> |
|
|
|
|
|
This Hub repository contains a HuggingFace's `transformers` implementation of [the original Kosmos-2 model](https://github.com/microsoft/unilm/tree/master/kosmos-2) from Microsoft. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
import requests |
|
|
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
|
|
|
|
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224") |
|
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") |
|
|
|
prompt = "<grounding>An image of" |
|
|
|
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
# The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs. |
|
image.save("new_image.jpg") |
|
image = Image.open("new_image.jpg") |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt", add_eos_token=False) |
|
|
|
generated_ids = model.generate( |
|
pixel_values=inputs["pixel_values"], |
|
input_ids=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
image_embeds=None, |
|
image_embeds_position_mask=inputs["image_embeds_position_mask"], |
|
use_cache=True, |
|
max_new_tokens=128, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
# Specify `cleanup_and_extract=False` in order to see the raw model generation. |
|
processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) |
|
|
|
print(processed_text) |
|
# `<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.` |
|
|
|
# By default, the generated text is cleanup and the entities are extracted. |
|
processed_text, entities = processor.post_process_generation(generated_text) |
|
|
|
print(processed_text) |
|
# `An image of a snowman warming himself by a fire.` |
|
|
|
print(entities) |
|
# `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]` |
|
|
|
``` |
|
|
|
|
|
## Tasks |
|
|
|
This model is capable of performing different tasks through changing the prompts. |
|
|
|
First, let's define a function to run a prompt. |
|
|
|
```python |
|
import requests |
|
|
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
|
|
|
|
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224") |
|
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") |
|
|
|
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
def run_example(prompt): |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt", add_eos_token=False) |
|
generated_ids = model.generate( |
|
pixel_values=inputs["pixel_values"], |
|
input_ids=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
image_embeds=None, |
|
image_embeds_position_mask=inputs["image_embeds_position_mask"], |
|
use_cache=True, |
|
max_new_tokens=128, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
_processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) |
|
processed_text, entities = processor.post_process_generation(generated_text) |
|
|
|
print(processed_text) |
|
print(entities) |
|
print(_processed_text) |
|
``` |
|
|
|
Here are the tasks `Kosmos-2` could perform: |
|
|
|
### Multimodal Grounding |
|
|
|
#### • Phrase Grounding |
|
```python |
|
prompt = "<grounding><phrase> a snowman</phrase>" |
|
run_example(prompt) |
|
|
|
# a snowman is warming himself by the fire |
|
# [('a snowman', (0, 9), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('the fire', (32, 40), [(0.203125, 0.015625, 0.453125, 0.859375)])] |
|
|
|
# <grounding><phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> is warming himself by<phrase> the fire</phrase><object><patch_index_0006><patch_index_0878></object> |
|
``` |
|
|
|
#### • Referring Expression Comprehension |
|
```python |
|
prompt = "<grounding><phrase> a snowman next to a fire</phrase>" |
|
run_example(prompt) |
|
|
|
# a snowman next to a fire |
|
# [('a snowman next to a fire', (0, 24), [(0.390625, 0.046875, 0.984375, 0.828125)])] |
|
|
|
# <grounding><phrase> a snowman next to a fire</phrase><object><patch_index_0044><patch_index_0863></object> |
|
``` |
|
|
|
### Multimodal Referring |
|
|
|
#### • Referring expression generation |
|
```python |
|
prompt = "<grounding><phrase> It</phrase><object><patch_index_0044><patch_index_0863></object> is" |
|
run_example(prompt) |
|
|
|
# It is snowman in a hat and scarf |
|
# [('It', (0, 2), [(0.390625, 0.046875, 0.984375, 0.828125)])] |
|
|
|
# <grounding><phrase> It</phrase><object><patch_index_0044><patch_index_0863></object> is snowman in a hat and scarf |
|
``` |
|
|
|
### Perception-Language Tasks |
|
|
|
#### • Grounded VQA |
|
```python |
|
prompt = "<grounding> Question: What is special about this image? Answer:" |
|
run_example(prompt) |
|
|
|
# Question: What is special about this image? Answer: The image features a snowman sitting by a campfire in the snow. |
|
# [('a snowman', (71, 80), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a campfire', (92, 102), [(0.109375, 0.640625, 0.546875, 0.984375)])] |
|
|
|
# <grounding> Question: What is special about this image? Answer: The image features<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> sitting by<phrase> a campfire</phrase><object><patch_index_0643><patch_index_1009></object> in the snow. |
|
``` |
|
|
|
#### • Grounded VQA with multimodal referring via bounding boxes |
|
```python |
|
prompt = "<grounding> Question: Where is<phrase> the fire</phrase><object><patch_index_0005><patch_index_0911></object> next to? Answer:" |
|
run_example(prompt) |
|
|
|
# Question: Where is the fire next to? Answer: Near the snowman. |
|
# [('the fire', (19, 27), [(0.171875, 0.015625, 0.484375, 0.890625)]), ('the snowman', (50, 61), [(0.390625, 0.046875, 0.984375, 0.828125)])] |
|
|
|
# <grounding> Question: Where is<phrase> the fire</phrase><object><patch_index_0005><patch_index_0911></object> next to? Answer: Near<phrase> the snowman</phrase><object><patch_index_0044><patch_index_0863></object>. |
|
``` |
|
|
|
### Grounded Image captioning |
|
|
|
#### • Brief |
|
|
|
```python |
|
prompt = "<grounding> An image of" |
|
run_example(prompt) |
|
|
|
# An image of a snowman warming himself by a campfire. |
|
# [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a campfire', (41, 51), [(0.109375, 0.640625, 0.546875, 0.984375)])] |
|
|
|
# <grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a campfire</phrase><object><patch_index_0643><patch_index_1009></object>. |
|
``` |
|
|
|
#### • Detailed |
|
|
|
```python |
|
prompt = "<grounding> Describe this image in detail:" |
|
run_example(prompt) |
|
|
|
# Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is wearing a hat, scarf, and gloves, with a pot nearby and a cup nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere. |
|
# [('a campfire', (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]), ('a hat', (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]), ('scarf', (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]), ('gloves', (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]), ('a pot', (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]), ('a cup', (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)])] |
|
|
|
# <grounding> Describe this image in detail: The image features a snowman sitting by<phrase> a campfire</phrase><object><patch_index_0005><patch_index_1007></object> in the snow. He is wearing<phrase> a hat</phrase><object><patch_index_0048><patch_index_0250></object>,<phrase> scarf</phrase><object><patch_index_0240><patch_index_0604></object>, and<phrase> gloves</phrase><object><patch_index_0400><patch_index_0532></object>, with<phrase> a pot</phrase><object><patch_index_0610><patch_index_0872></object> nearby and<phrase> a cup</phrase><object><patch_index_0796><patch_index_1023></object> nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere. |
|
``` |