|
--- |
|
license: llama3 |
|
model-index: |
|
- name: Llama-3-70B-Synthia-v3.5 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 60.76 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 49.12 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 18.96 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 18.34 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 23.39 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 40.65 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
|
|
# Llama-3-70B-Synthia-v3.5 |
|
Llama-3-70B-Synthia-v3.5 (Synthetic Intelligent Agent) is a general purpose Large Language Model (LLM). It was trained on the Synthia-v3.5 dataset that contains the varied system contexts, plus some other publicly available datasets. |
|
|
|
It has been fine-tuned for instruction following as well as having long-form conversations. |
|
|
|
Compute for Llama-3-70B-Synthia-v3.5 was sponsored by [KindoAI](https://kindo.ai/). |
|
|
|
<br> |
|
|
|
![Synthia](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5/resolve/main/Synthia-3.5.jpg) |
|
|
|
<br> |
|
|
|
|
|
|
|
|
|
## Evaluation |
|
|
|
We evaluated Llama-3-70B-Synthia-v3.5 on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. |
|
|
|
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). Section to follow. |
|
|
|
|||| |
|
|:------:|:--------:|:-------:| |
|
|**Task**|**Metric**|**Value**| |
|
|*arc_challenge*|acc_norm|| |
|
|*hellaswag*|acc_norm|| |
|
|*mmlu*|acc_norm|| |
|
|*truthfulqa_mc*|mc2|| |
|
|**Total Average**|-||| |
|
|
|
<br> |
|
|
|
|
|
# Sample code to run inference |
|
|
|
```python |
|
import torch, json |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "/home/migel/Llama-3-70B-Synthia-v3.5" |
|
output_file_path = "/home/migel/conversations.jsonl" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
load_in_4bit=False, |
|
trust_remote_code=False, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
def generate_text(instruction): |
|
tokens = tokenizer.encode(instruction) |
|
tokens = torch.LongTensor(tokens).unsqueeze(0) |
|
tokens = tokens.to("cuda") |
|
|
|
instance = { |
|
"input_ids": tokens, |
|
"top_p": 1.0, |
|
"temperature": 0.75, |
|
"generate_len": 1024, |
|
"top_k": 50, |
|
} |
|
|
|
length = len(tokens[0]) |
|
with torch.no_grad(): |
|
rest = model.generate( |
|
input_ids=tokens, |
|
max_length=length + instance["generate_len"], |
|
use_cache=True, |
|
do_sample=True, |
|
top_p=instance["top_p"], |
|
temperature=instance["temperature"], |
|
top_k=instance["top_k"], |
|
num_return_sequences=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
output = rest[0][length:] |
|
string = tokenizer.decode(output, skip_special_tokens=True) |
|
return f"{string}" |
|
|
|
conversation = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are Synthia, a helful, female AI assitant. You always provide detailed answers without hesitation.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n""" |
|
|
|
while True: |
|
user_input = input("You: ") |
|
llm_prompt = f"{conversation}{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
answer = generate_text(llm_prompt) |
|
print(answer) |
|
|
|
conversation = f"{llm_prompt}{answer}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n" |
|
|
|
json_data = {"prompt": user_input, "answer": answer} |
|
|
|
with open(output_file_path, "a") as output_file: |
|
output_file.write(json.dumps(json_data) + "\n") |
|
``` |
|
|
|
# Join My General AI Discord (NeuroLattice): |
|
https://discord.gg/Hz6GrwGFKD |
|
|
|
# Limitations & Biases: |
|
|
|
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. |
|
|
|
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. |
|
|
|
Exercise caution and cross-check information when necessary. This is an uncensored model. |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_migtissera__Llama-3-70B-Synthia-v3.5) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |35.20| |
|
|IFEval (0-Shot) |60.76| |
|
|BBH (3-Shot) |49.12| |
|
|MATH Lvl 5 (4-Shot)|18.96| |
|
|GPQA (0-shot) |18.34| |
|
|MuSR (0-shot) |23.39| |
|
|MMLU-PRO (5-shot) |40.65| |
|
|
|
|