metadata
license: other
license_name: deepseek-license
license_link: LICENSE
Quantization details
- Original model: deepseek-ai/deepseek-coder-7b-base-v1.5
- Quantized with llama.cpp revision:
ceca1ae
- Ollama repository: wojtek/deepseek-coder
Upstream README
[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]
1. Introduction of Deepseek-Coder-7B-Base-v1.5
Deepseek-Coder-7B-Base-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective.
- Home Page: DeepSeek
- Repository: deepseek-ai/deepseek-coder
- Chat With DeepSeek Coder: DeepSeek-Coder
2. Evaluation Results
3. How to Use
Here give an example of how to use our model.
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base-v1.5", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base-v1.5", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").cuda()
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
4. License
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
See the LICENSE-MODEL for more details.
5. Contact
If you have any questions, please raise an issue or contact us at [email protected].