master_cate_ac5 / README.md
mini1013's picture
Push model using huggingface_hub.
eb1d60c verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 한국금거래소 순금 길상무늬 골드바 1g 기본 종이 케이스 주식회사 한국금거래소디지털에셋
  - text: '[뽀르띠/부모님선물] 순금 24K 0.5g 카드형 카네이션 골드바 06 존경_화이트 뽀르띠'
  - text: >-
      순금 미니골드바 3.75g 각인 메세지 편지 순금선물 24K 999.9 재테크 금투자 3.75g 골드바+메세지 각인+고급케이스
      골드베이
  - text: 순금뱃지 1.875g 기업 회사 은행 병원 대학교 금뱃지 2.금형추가 투자골드
  - text: '[한국표준금거래소] 컷팅 하트 골드바 1g 고급 패키지+쇼핑백O (주)한국표준거래소'
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9976689976689976
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0.0
  • '[한국표준금거래소] 999.9‰순금 골드바 11.25g 쇼핑백X (주)한국표준거래소'
  • '한국금거래소 순금 꽃다발 골드바 0.2g 기본 종이 케이스 한국금거래소디지털에셋'
  • '한국금거래소 순금 비상금 통장 골드바 1g 주식회사 한국금거래소디지털에셋'
1.0
  • '[한국금거래소]한국금거래소 순금 복주머니 3.75g 롯데아이몰'
  • '[한국금거래소] 어락도 금수저 카드 3.75g 주식회사 한국금거래소디지털에셋'
  • '순금거북이 37.5g 종로골드'
2.0
  • '[한국금거래소] 실버바 100g 은테크 은투자 은시세 생일 기념일 축하 선물 주식회사 한국금거래소디지털에셋'
  • '[100g 실버바] 한국금거래소 99.99% 투자용 은괴 주식회사 골드나라'
  • '[삼성금거래소]Silver Bar(실버바)100g AKmall'

Evaluation

Metrics

Label Metric
all 0.9977

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac5")
# Run inference
preds = model("순금뱃지 1.875g 기업 회사 은행 병원 대학교 금뱃지 2.금형추가 투자골드")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 7.7583 17
Label Training Sample Count
0.0 50
1.0 50
2.0 20

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0526 1 0.4971 -
2.6316 50 0.0373 -
5.2632 100 0.0001 -
7.8947 150 0.0 -
10.5263 200 0.0 -
13.1579 250 0.0 -
15.7895 300 0.0 -
18.4211 350 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}