mini1013's picture
Push model using huggingface_hub.
4250543 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 디스이즈 명화 디퓨저 리필 퓨어코튼 200ml (WB6AEE5) 본상품선택 기타/해당사항 없음
  - text: 에르메스 떼르 데르메스EDT 50ml 옵션없음 주식회사 비엘컴퍼니
  - text: >-
      룸 디퓨저 코리앤더 200ml CL13965000200 투명_F 라부르켓(L:A BRUKET AB)/(주)신세계인터내셔날, 서울특별시
      강남구 도산대로 449, 소비자상담실: 1644-4490
  - text: '[향수] MAISON LOUIS MARIE 넘버13 누벨바그 퍼퓸오일 15ML509678 흰색_FREE(3Y6) 위원투고투'
  - text: '(시시호시)훈옥당 다이고의 체리블로섬 인센스 멀티칼라(ML)_Free '
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.9578313253012049
            name: Accuracy

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '로얄워터 블랑쉬 코튼 비누향 베이비파우더 살냄새 수제 승무원 엑스트레 드 퍼퓸 30ml 24. 블루밍 (판매 1위) 주식회사 로얄워터'
  • '블루 드 샤넬 빠르펭 50ML 옵션없음 플로라 무역'
  • '딥티크 뗌포 오드 퍼퓸 75ml 옵션없음 대박컴퍼니'
0.0
  • '쿨티 - 스틸레 룸 디퓨저 - 린파 500ml/16.9oz 스트로베리넷 (홍콩)'
  • '소소모소 디퓨저리필 500ml_코튼브리즈 _salestrNo:2439_지점명:emartNE.O.001 (주)리빙탑스/해당사항 없음'
  • '디퓨저 섬유 리드스틱 화이트 50개입 디퓨저 섬유 옵션없음 '
2.0
  • '인센스 스틱 홀더 접시형 그린 (WC9C73F) 본상품선택 기타/해당사항 없음'
  • '인센스홀더향 향꽂이 홀더 물방울 인테리어 인센스 (WD2F3FF) 본상품선택 기타/해당사항 없음'
  • '인센스 홀더 미니화병 황동 향 피우기 나그참파 꽂이 (WBC1E2F) 본상품선택 기타/해당사항 없음'

Evaluation

Metrics

Label Accuracy
all 0.9578

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt10_test")
# Run inference
preds = model("에르메스 떼르 데르메스EDT 50ml 옵션없음 주식회사 비엘컴퍼니")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 9.4127 18
Label Training Sample Count
0.0 20
1.0 23
2.0 20

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (50, 50)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 60
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.125 1 0.4915 -
6.25 50 0.1556 -
12.5 100 0.0 -
18.75 150 0.0 -
25.0 200 0.0 -
31.25 250 0.0 -
37.5 300 0.0 -
43.75 350 0.0 -
50.0 400 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}