|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 2장 지퍼형 항균베개솜 4060 애프터식스 가구/인테리어>솜류>베개솜/속통>일반베개솜 |
|
- text: 홈즈리빙 알러지케어 순면 시그니처 경추베개 가구/인테리어>솜류>베개솜/속통>마이크로화이바베개솜 |
|
- text: 그레이 바닥요매트 요솜 싱글1인용 요커버 J리빙 가구/인테리어>솜류>요솜/매트솜>견면요솜 |
|
- text: 솔로젠 가드풀 바이오 문손잡이 커버 소형 2매입 자전거 도어락 TgQ 가구/인테리어>솜류>요솜/매트솜>견면요솜 |
|
- text: 겨울용 알러지케어 블랙파이핑 헝가리 구스 이불 솜털80 - 퀸 가구/인테리어>솜류>이불솜>거위털/오리털이불솜 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 4.0 | <ul><li>'토게 속성 인형 이누마키 솜인형 솜뭉치 가구/인테리어>솜류>쿠션솜'</li><li>'모던하우스 호텔 다운필 쿠션솜 50x50 FP4119002 가구/인테리어>솜류>쿠션솜'</li><li>'텐바이텐 푹신한 국산 쿠션솜 지퍼형 빵빵한 구름솜 50x50 가구/인테리어>솜류>쿠션솜'</li></ul> | |
|
| 2.0 | <ul><li>'목화 솜 요 솜이불 겨울 패드 토퍼 이불 바닥 목화솜 가구/인테리어>솜류>요솜/매트솜>목화요솜'</li><li>'이브자리 뉴 레이언 요솜 S D Q K 가구/인테리어>솜류>요솜/매트솜>견면요솜'</li><li>'생일 축하 케이크 토퍼 글리터 발레 걸 댄스 발레리나 여아용 파티 장식 댄서 토퍼 골든 132066 가구/인테리어>솜류>요솜/매트솜>견면요솜'</li></ul> | |
|
| 3.0 | <ul><li>'폭스베딩 사계절용 모달 헝가리 구스다운 이불 솜털93프로 - 킹600g 가구/인테리어>솜류>이불솜>거위털/오리털이불솜'</li><li>'슈프렐 95도 사계절 이불솜 가구/인테리어>솜류>이불솜>일반이불솜'</li><li>'북유럽풍 램스울 양모 겨울이불 순면 이불세트 침구 극세사 두꺼운 가구/인테리어>솜류>이불솜>양모이불솜'</li></ul> | |
|
| 0.0 | <ul><li>'베이직 방석솜 가구/인테리어>솜류>방석솜'</li><li>'코지톡 사용감의 원형 솜방석 4개 가구/인테리어>솜류>방석솜'</li><li>'포근한 하라홈 국내산 구름 새솜 방석솜 50x50 가구/인테리어>솜류>방석솜'</li></ul> | |
|
| 1.0 | <ul><li>'힐튼 호텔 퀼팅베개 계절베개 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li><li>'바운티풀 호텔베개 폴란드 구스다운 90 수피마면 삼중구조 구스베개 600g 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li><li>'폭스베딩 프라우덴 헝가리산 구스 베개솜 솜털90 60수 베개커버선물 EH2TXX00106 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_fi4") |
|
# Run inference |
|
preds = model("2장 지퍼형 항균베개솜 4060 애프터식스 가구/인테리어>솜류>베개솜/속통>일반베개솜") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 2 | 8.6171 | 19 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 70 | |
|
| 2.0 | 70 | |
|
| 3.0 | 70 | |
|
| 4.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0145 | 1 | 0.4828 | - | |
|
| 0.7246 | 50 | 0.4997 | - | |
|
| 1.4493 | 100 | 0.2078 | - | |
|
| 2.1739 | 150 | 0.0067 | - | |
|
| 2.8986 | 200 | 0.0001 | - | |
|
| 3.6232 | 250 | 0.0 | - | |
|
| 4.3478 | 300 | 0.0 | - | |
|
| 5.0725 | 350 | 0.0 | - | |
|
| 5.7971 | 400 | 0.0 | - | |
|
| 6.5217 | 450 | 0.0 | - | |
|
| 7.2464 | 500 | 0.0 | - | |
|
| 7.9710 | 550 | 0.0 | - | |
|
| 8.6957 | 600 | 0.0 | - | |
|
| 9.4203 | 650 | 0.0 | - | |
|
| 10.1449 | 700 | 0.0 | - | |
|
| 10.8696 | 750 | 0.0 | - | |
|
| 11.5942 | 800 | 0.0 | - | |
|
| 12.3188 | 850 | 0.0 | - | |
|
| 13.0435 | 900 | 0.0 | - | |
|
| 13.7681 | 950 | 0.0 | - | |
|
| 14.4928 | 1000 | 0.0 | - | |
|
| 15.2174 | 1050 | 0.0 | - | |
|
| 15.9420 | 1100 | 0.0 | - | |
|
| 16.6667 | 1150 | 0.0 | - | |
|
| 17.3913 | 1200 | 0.0 | - | |
|
| 18.1159 | 1250 | 0.0 | - | |
|
| 18.8406 | 1300 | 0.0 | - | |
|
| 19.5652 | 1350 | 0.0 | - | |
|
| 20.2899 | 1400 | 0.0 | - | |
|
| 21.0145 | 1450 | 0.0 | - | |
|
| 21.7391 | 1500 | 0.0 | - | |
|
| 22.4638 | 1550 | 0.0 | - | |
|
| 23.1884 | 1600 | 0.0 | - | |
|
| 23.9130 | 1650 | 0.0 | - | |
|
| 24.6377 | 1700 | 0.0 | - | |
|
| 25.3623 | 1750 | 0.0 | - | |
|
| 26.0870 | 1800 | 0.0 | - | |
|
| 26.8116 | 1850 | 0.0 | - | |
|
| 27.5362 | 1900 | 0.0 | - | |
|
| 28.2609 | 1950 | 0.0 | - | |
|
| 28.9855 | 2000 | 0.0 | - | |
|
| 29.7101 | 2050 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |