|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 발열양말 방한 보온양말 등산 낚시 스키 스노우보드 스케이트 야외작업 스포츠/레저>스키/보드>스키/보드방한용품>양말 |
|
- text: 무크 엠 무크 펠로 데크 다크네이비 517413203ZB 스포츠/레저>스키/보드>스노보드장비>데크 |
|
- text: 스키복 성인 자켓 상의 여성용 JACKET 스키자켓 남성 스포츠/레저>스키/보드>스키복>상의 |
|
- text: Toko Edge Tuner Pro 스노우보드 엣지 튜닝 컷팅 스포츠/레저>스키/보드>스키/보드용품>보수장비 |
|
- text: 헬리아 주니어 고글 카이로스 무광퍼플블랙 보드고글 스포츠고글 스포츠/레저>스키/보드>스키/보드용품>고글 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2.0 | <ul><li>'충전식 열선양말 발열 스키장 보드 스키 등산 스포츠/레저>스키/보드>스키/보드방한용품>양말'</li><li>'우주마켓 겨울 방한 마스크 보온 등산 골프 따뜻한 자전거 귀덮개 귀마개 마스크 스포츠/레저>스키/보드>스키/보드방한용품>귀마개'</li><li>'다이나핏 폴디드 스몰로고 비니 Dark 스포츠/레저>스키/보드>스키/보드방한용품>비니'</li></ul> | |
|
| 0.0 | <ul><li>'방풍 방수 여성 스노우 보드 플레이 여자 복 어스투 점퍼 점프 슈트 수트 스키 가프 스포츠/레저>스키/보드>보드복>재킷'</li><li>'2023 여성용 원피스 스키 슈트 겨울 야외 스포츠 방풍 방수 보온 스노보드 점프슈트 스포츠/레저>스키/보드>보드복>상하세트'</li><li>'여성용 스노우보드 점프수트 여성 일체형 스키복 방 -남성용 민트 그린 수트 스포츠/레저>스키/보드>보드복>상하세트'</li></ul> | |
|
| 5.0 | <ul><li>'2223 헤드 스키 PURE JOY 여성용 스포츠/레저>스키/보드>스키장비>플레이트'</li><li>'미니 스키 부츠 스케이트 썰매 스노우 숏부츠 스포츠/레저>스키/보드>스키장비>부츠'</li><li>'PHOENIX 피닉스 주니어 스키 팀복 2223 PHENIX KOREA JR TEAM RD 스포츠/레저>스키/보드>스키장비>플레이트'</li></ul> | |
|
| 4.0 | <ul><li>'스키복 세트 여성 남성 방한 방풍 스포츠/레저>스키/보드>스키복>상하세트'</li><li>'스파이더 남성 보르미오 GTX 스키 팬츠 SPFWCISP401MBLK LE1216929158 스포츠/레저>스키/보드>스키복>하의'</li><li>'카르포스 스키바지 남자 겨울 2521013 스포츠/레저>스키/보드>스키복>하의'</li></ul> | |
|
| 3.0 | <ul><li>'XCMAN 4겹콘 스터드 디아 7 87인치 알루미늄 스노우보드 스톰프 패드 9pcs 스포츠/레저>스키/보드>스키/보드용품>스티커용품'</li><li>'Thule RoundTrip 스키 스노보드 더플 백 90L 다크 슬레이트 142322 스포츠/레저>스키/보드>스키/보드용품>보드가방'</li><li>'ToeJamR 스노우보드 스톰프 패드 나비 스포츠/레저>스키/보드>스키/보드용품>스티커용품'</li></ul> | |
|
| 1.0 | <ul><li>'스노우 스키 여성 부츠 보드 롱 털 따듯한 스노보드 스포츠/레저>스키/보드>스노보드장비>부츠'</li><li>'나이트로 팀 바인딩 2223 NITRO Team 스포츠/레저>스키/보드>스노보드장비>바인딩'</li><li>'헌터 WOMEN 인트레피드 리플렉티브 카모 숏 스노우부츠 - 패턴그레이 WFS1004PCTPTG 스포츠/레저>스키/보드>스노보드장비>부츠'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_sl19") |
|
# Run inference |
|
preds = model("스키복 성인 자켓 상의 여성용 JACKET 스키자켓 남성 스포츠/레저>스키/보드>스키복>상의") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 9.4619 | 18 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 70 | |
|
| 2.0 | 70 | |
|
| 3.0 | 70 | |
|
| 4.0 | 70 | |
|
| 5.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0120 | 1 | 0.4926 | - | |
|
| 0.6024 | 50 | 0.497 | - | |
|
| 1.2048 | 100 | 0.5003 | - | |
|
| 1.8072 | 150 | 0.1918 | - | |
|
| 2.4096 | 200 | 0.0218 | - | |
|
| 3.0120 | 250 | 0.0004 | - | |
|
| 3.6145 | 300 | 0.0003 | - | |
|
| 4.2169 | 350 | 0.0001 | - | |
|
| 4.8193 | 400 | 0.0001 | - | |
|
| 5.4217 | 450 | 0.0 | - | |
|
| 6.0241 | 500 | 0.0 | - | |
|
| 6.6265 | 550 | 0.0 | - | |
|
| 7.2289 | 600 | 0.0 | - | |
|
| 7.8313 | 650 | 0.0 | - | |
|
| 8.4337 | 700 | 0.0 | - | |
|
| 9.0361 | 750 | 0.0 | - | |
|
| 9.6386 | 800 | 0.0 | - | |
|
| 10.2410 | 850 | 0.0 | - | |
|
| 10.8434 | 900 | 0.0 | - | |
|
| 11.4458 | 950 | 0.0 | - | |
|
| 12.0482 | 1000 | 0.0 | - | |
|
| 12.6506 | 1050 | 0.0001 | - | |
|
| 13.2530 | 1100 | 0.0 | - | |
|
| 13.8554 | 1150 | 0.0 | - | |
|
| 14.4578 | 1200 | 0.0 | - | |
|
| 15.0602 | 1250 | 0.0 | - | |
|
| 15.6627 | 1300 | 0.0 | - | |
|
| 16.2651 | 1350 | 0.0 | - | |
|
| 16.8675 | 1400 | 0.0 | - | |
|
| 17.4699 | 1450 | 0.0 | - | |
|
| 18.0723 | 1500 | 0.0 | - | |
|
| 18.6747 | 1550 | 0.0 | - | |
|
| 19.2771 | 1600 | 0.0 | - | |
|
| 19.8795 | 1650 | 0.0 | - | |
|
| 20.4819 | 1700 | 0.0 | - | |
|
| 21.0843 | 1750 | 0.0 | - | |
|
| 21.6867 | 1800 | 0.0 | - | |
|
| 22.2892 | 1850 | 0.0 | - | |
|
| 22.8916 | 1900 | 0.0 | - | |
|
| 23.4940 | 1950 | 0.0 | - | |
|
| 24.0964 | 2000 | 0.0 | - | |
|
| 24.6988 | 2050 | 0.0 | - | |
|
| 25.3012 | 2100 | 0.0 | - | |
|
| 25.9036 | 2150 | 0.0 | - | |
|
| 26.5060 | 2200 | 0.0 | - | |
|
| 27.1084 | 2250 | 0.0 | - | |
|
| 27.7108 | 2300 | 0.0 | - | |
|
| 28.3133 | 2350 | 0.0 | - | |
|
| 28.9157 | 2400 | 0.0 | - | |
|
| 29.5181 | 2450 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |