SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '태권도 발차기 고정식 미트 격투기 복싱 보조 장비 스포츠/레저>권투>미트'
  • '태권도 발차기 미트 킥 가정용 연습 샌드백 훈련 장비 블랙화이트 업그레이드 - 이중층쿠션 킥트레이닝 스포츠/레저>권투>미트'
  • '빅산 PU펀치볼-레드 스포츠/레저>권투>미트'
2.0
  • '스파트 샌드백걸이대 권투 복싱장 SFC-W706 스포츠/레저>권투>샌드백'
  • 'hale 뮤직복싱머신 샌드백 펀칭백 펀치 스마트 스포츠/레저>권투>샌드백'
  • '스타스포츠 스타 팝업 디펜더 구기종목 더미및타겟으로활용 XU400 스포츠/레저>권투>샌드백'
0.0
  • '이사미 글러브 여자 스파링 복싱 킥복싱 MMA 프리 SS801 스포츠/레저>권투>글러브'
  • '베넘 Venum 엘리트 복싱 글러브 스포츠/레저>권투>글러브'
  • '아식스 ASICS 남성용 라이벌 레슬링 싱글렛 스포츠/레저>권투>글러브'
3.0
  • '운동 장갑 다이어트 복싱 격투기 스파링 글러브 핸드랩 권투 주짓수 스포츠/레저>권투>핸드랩'
  • '코어 퀵 핸드랩 복싱용품 보호용품 에버라스트핸드랩 스포츠/레저>권투>핸드랩'
  • '에버라스트 프로 핸드랩 스포츠/레저>권투>핸드랩'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl2")
# Run inference
preds = model("복싱 권투 어린이 글러브 아동용 킥 샌드백 스포츠/레저>권투>글러브")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 9.5857 18
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0182 1 0.4882 -
0.9091 50 0.4817 -
1.8182 100 0.133 -
2.7273 150 0.0004 -
3.6364 200 0.0 -
4.5455 250 0.0 -
5.4545 300 0.0 -
6.3636 350 0.0 -
7.2727 400 0.0 -
8.1818 450 0.0 -
9.0909 500 0.0 -
10.0 550 0.0 -
10.9091 600 0.0 -
11.8182 650 0.0 -
12.7273 700 0.0 -
13.6364 750 0.0 -
14.5455 800 0.0 -
15.4545 850 0.0 -
16.3636 900 0.0 -
17.2727 950 0.0 -
18.1818 1000 0.0 -
19.0909 1050 0.0 -
20.0 1100 0.0 -
20.9091 1150 0.0 -
21.8182 1200 0.0 -
22.7273 1250 0.0 -
23.6364 1300 0.0 -
24.5455 1350 0.0 -
25.4545 1400 0.0 -
26.3636 1450 0.0 -
27.2727 1500 0.0 -
28.1818 1550 0.0 -
29.0909 1600 0.0 -
30.0 1650 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_sl2

Base model

klue/roberta-base
Finetuned
(153)
this model

Evaluation results