master_cate_sl2 / README.md
mini1013's picture
Push model using huggingface_hub.
df8e67b verified
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 복싱 권투 어린이 글러브 아동용  샌드백 스포츠/레저>권투>글러브
  - text: 이지핏 흡착형 스탠딩 샌드백 펀치볼 격투기 복싱 스포츠/레저>권투>샌드백
  - text: Spall Pro US Dino 남성 여성용 복싱 글러브 - 프로 트레이닝 스파링 펀칭 스포츠/레저>권투>글러브
  - text: 에버라스트 에버레스트 혼합 격투기 헤비  글러브 L 384355 스포츠/레저>권투>글러브
  - text: 레예스글러브 장갑 펀치 가죽 스파링 어린이용 PU 훈련 스포츠  스포츠/레저>권투>글러브
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 1
            name: Accuracy

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '태권도 발차기 고정식 미트 격투기 복싱 보조 장비 스포츠/레저>권투>미트'
  • '태권도 발차기 미트 킥 가정용 연습 샌드백 훈련 장비 블랙화이트 업그레이드 - 이중층쿠션 킥트레이닝 스포츠/레저>권투>미트'
  • '빅산 PU펀치볼-레드 스포츠/레저>권투>미트'
2.0
  • '스파트 샌드백걸이대 권투 복싱장 SFC-W706 스포츠/레저>권투>샌드백'
  • 'hale 뮤직복싱머신 샌드백 펀칭백 펀치 스마트 스포츠/레저>권투>샌드백'
  • '스타스포츠 스타 팝업 디펜더 구기종목 더미및타겟으로활용 XU400 스포츠/레저>권투>샌드백'
0.0
  • '이사미 글러브 여자 스파링 복싱 킥복싱 MMA 프리 SS801 스포츠/레저>권투>글러브'
  • '베넘 Venum 엘리트 복싱 글러브 스포츠/레저>권투>글러브'
  • '아식스 ASICS 남성용 라이벌 레슬링 싱글렛 스포츠/레저>권투>글러브'
3.0
  • '운동 장갑 다이어트 복싱 격투기 스파링 글러브 핸드랩 권투 주짓수 스포츠/레저>권투>핸드랩'
  • '코어 퀵 핸드랩 복싱용품 보호용품 에버라스트핸드랩 스포츠/레저>권투>핸드랩'
  • '에버라스트 프로 핸드랩 스포츠/레저>권투>핸드랩'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl2")
# Run inference
preds = model("복싱 권투 어린이 글러브 아동용 킥 샌드백 스포츠/레저>권투>글러브")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 9.5857 18
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0182 1 0.4882 -
0.9091 50 0.4817 -
1.8182 100 0.133 -
2.7273 150 0.0004 -
3.6364 200 0.0 -
4.5455 250 0.0 -
5.4545 300 0.0 -
6.3636 350 0.0 -
7.2727 400 0.0 -
8.1818 450 0.0 -
9.0909 500 0.0 -
10.0 550 0.0 -
10.9091 600 0.0 -
11.8182 650 0.0 -
12.7273 700 0.0 -
13.6364 750 0.0 -
14.5455 800 0.0 -
15.4545 850 0.0 -
16.3636 900 0.0 -
17.2727 950 0.0 -
18.1818 1000 0.0 -
19.0909 1050 0.0 -
20.0 1100 0.0 -
20.9091 1150 0.0 -
21.8182 1200 0.0 -
22.7273 1250 0.0 -
23.6364 1300 0.0 -
24.5455 1350 0.0 -
25.4545 1400 0.0 -
26.3636 1450 0.0 -
27.2727 1500 0.0 -
28.1818 1550 0.0 -
29.0909 1600 0.0 -
30.0 1650 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}