mini1013's picture
Push model using huggingface_hub.
31d1c0f verified
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스 택1 004 맥스 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 >
브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리
- text: 더툴랩 더스타일래쉬 4종(리얼/내츄럴/볼륨/맥스) 택1 001 리얼 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품
> 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
- text: 더툴랩 더스타일래쉬 4종(리얼/내츄럴/볼륨/맥스) 택1 001 리얼 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품
> 브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리
- text: 더툴랩 더스타일 래쉬 맥스(TSL004) × 2 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 LotteOn
> 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리
- text: 더툴랩 스타일 래쉬 속눈썹 볼륨(TSL003) × 1 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn
> 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9812680115273775
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <ul><li>'프레이속눈썹 가닥속눈썹 V_12mm (#M)홈>전체상품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'아리따움 아이돌 래쉬 프리미엄 타입 22호 러블리 아이(프리미엄) (#M)위메프 > 뷰티 > 이미용소품/기기 > 아이소품 > 인조속눈썹 위메프 > 뷰티 > 이미용소품/기기 > 아이소품 > 인조속눈썹'</li><li>'에뛰드하우스 마이뷰티툴 속눈썹 6종/인조속눈썹 6호 볼륨 업 (#M)11st>뷰티소품>메이크업소품>메이크업소품 11st > 뷰티 > 뷰티소품 > 메이크업소품'</li></ul> |
| 1 | <ul><li>'트위저맨 - 스텐리스 스틸 브로우 셰이핑 가위 & 브러쉬 (스튜디오 컬렉션) 2pcs ssg > 뷰티 > 헤어/바디 > 헤어기기/소품 > 드라이기 ssg > 뷰티 > 헤어/바디 > 헤어기기/소품 > 드라이기'</li><li>'트위저맨 Studio Collection 브로우 쉐이핑 가위 브러쉬 NEW 정품 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트'</li><li>'트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'</li></ul> |
| 0 | <ul><li>'토니모리 쌍꺼풀액 속눈썹 접착제 홈>아리따움;(#M)홈>전체상품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'에뛰드 마이뷰티툴 쌍꺼풀 액&속눈썹 접착제 에뛰드 마이뷰티툴 쌍꺼풀 액&속눈썹 접착제 홈>미용소품>얼굴소품>쌍커풀;(#M)홈>미용소품>아이>속눈썹/쌍꺼풀 OLIVEYOUNG > 미용소품 > 아이 > 속눈썹/쌍꺼풀'</li><li>'트위저맨 폴딩 아이래쉬컴850676 30 66416850676 30 (#M)SSG.COM/메이크업/베이스메이크업/쿠션파운데이션 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션파운데이션'</li></ul> |
| 2 | <ul><li>'트위저맨 프로페셔널 아이래쉬 컬러 1개 (#M)SSG.COM/미용기기/소품/아이소품/뷰러 ssg > 뷰티 > 미용기기/소품 > 아이소품 > 뷰러'</li><li>'더툴랩 1039R 래쉬컬러 레귤러 (아찔한컬링) (#M)홈>화장품/미용>뷰티소품>아이소품>뷰러 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 뷰러'</li><li>'슈에무라 아이래쉬 컬러 55721 LOREAL > Ssg > 슈에무라 > Branded > 슈에무라 ssg > 뷰티 > 메이크업 > 베이스메이크업'</li></ul> |
| 3 | <ul><li>'e.l.f. 듀얼 펜슬 샤프너 혼합 색상 × 6개입 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'e.l.f. 듀얼 펜슬 샤프너 2세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'e.l.f. 듀얼 펜슬 샤프너 4세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9813 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3_test_flat")
# Run inference
preds = model("더툴랩 더스타일 래쉬 맥스(TSL004) × 2개 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 13 | 19.2707 | 47 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 9 |
| 2 | 50 |
| 3 | 22 |
| 4 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0035 | 1 | 0.4744 | - |
| 0.1767 | 50 | 0.4176 | - |
| 0.3534 | 100 | 0.3618 | - |
| 0.5300 | 150 | 0.2985 | - |
| 0.7067 | 200 | 0.2327 | - |
| 0.8834 | 250 | 0.1017 | - |
| 1.0601 | 300 | 0.0185 | - |
| 1.2367 | 350 | 0.0037 | - |
| 1.4134 | 400 | 0.0018 | - |
| 1.5901 | 450 | 0.0009 | - |
| 1.7668 | 500 | 0.0004 | - |
| 1.9435 | 550 | 0.0005 | - |
| 2.1201 | 600 | 0.0002 | - |
| 2.2968 | 650 | 0.0002 | - |
| 2.4735 | 700 | 0.0001 | - |
| 2.6502 | 750 | 0.0001 | - |
| 2.8269 | 800 | 0.0001 | - |
| 3.0035 | 850 | 0.0001 | - |
| 3.1802 | 900 | 0.0001 | - |
| 3.3569 | 950 | 0.0 | - |
| 3.5336 | 1000 | 0.0 | - |
| 3.7102 | 1050 | 0.0001 | - |
| 3.8869 | 1100 | 0.0001 | - |
| 4.0636 | 1150 | 0.0 | - |
| 4.2403 | 1200 | 0.0 | - |
| 4.4170 | 1250 | 0.0 | - |
| 4.5936 | 1300 | 0.0 | - |
| 4.7703 | 1350 | 0.0 | - |
| 4.9470 | 1400 | 0.0 | - |
| 5.1237 | 1450 | 0.0 | - |
| 5.3004 | 1500 | 0.0 | - |
| 5.4770 | 1550 | 0.0 | - |
| 5.6537 | 1600 | 0.0 | - |
| 5.8304 | 1650 | 0.0 | - |
| 6.0071 | 1700 | 0.0 | - |
| 6.1837 | 1750 | 0.0 | - |
| 6.3604 | 1800 | 0.0 | - |
| 6.5371 | 1850 | 0.0 | - |
| 6.7138 | 1900 | 0.0 | - |
| 6.8905 | 1950 | 0.0 | - |
| 7.0671 | 2000 | 0.0 | - |
| 7.2438 | 2050 | 0.0 | - |
| 7.4205 | 2100 | 0.0 | - |
| 7.5972 | 2150 | 0.0023 | - |
| 7.7739 | 2200 | 0.0029 | - |
| 7.9505 | 2250 | 0.0001 | - |
| 8.1272 | 2300 | 0.0 | - |
| 8.3039 | 2350 | 0.0 | - |
| 8.4806 | 2400 | 0.0 | - |
| 8.6572 | 2450 | 0.0 | - |
| 8.8339 | 2500 | 0.0 | - |
| 9.0106 | 2550 | 0.0 | - |
| 9.1873 | 2600 | 0.0 | - |
| 9.3640 | 2650 | 0.0 | - |
| 9.5406 | 2700 | 0.0 | - |
| 9.7173 | 2750 | 0.0 | - |
| 9.8940 | 2800 | 0.0 | - |
| 10.0707 | 2850 | 0.0 | - |
| 10.2473 | 2900 | 0.0 | - |
| 10.4240 | 2950 | 0.0 | - |
| 10.6007 | 3000 | 0.0 | - |
| 10.7774 | 3050 | 0.0 | - |
| 10.9541 | 3100 | 0.0 | - |
| 11.1307 | 3150 | 0.0 | - |
| 11.3074 | 3200 | 0.0 | - |
| 11.4841 | 3250 | 0.0 | - |
| 11.6608 | 3300 | 0.0 | - |
| 11.8375 | 3350 | 0.0 | - |
| 12.0141 | 3400 | 0.0 | - |
| 12.1908 | 3450 | 0.0 | - |
| 12.3675 | 3500 | 0.0 | - |
| 12.5442 | 3550 | 0.0 | - |
| 12.7208 | 3600 | 0.0 | - |
| 12.8975 | 3650 | 0.0 | - |
| 13.0742 | 3700 | 0.0 | - |
| 13.2509 | 3750 | 0.0 | - |
| 13.4276 | 3800 | 0.0 | - |
| 13.6042 | 3850 | 0.0 | - |
| 13.7809 | 3900 | 0.0 | - |
| 13.9576 | 3950 | 0.0 | - |
| 14.1343 | 4000 | 0.0 | - |
| 14.3110 | 4050 | 0.0 | - |
| 14.4876 | 4100 | 0.0 | - |
| 14.6643 | 4150 | 0.0 | - |
| 14.8410 | 4200 | 0.0 | - |
| 15.0177 | 4250 | 0.0 | - |
| 15.1943 | 4300 | 0.0 | - |
| 15.3710 | 4350 | 0.0 | - |
| 15.5477 | 4400 | 0.0 | - |
| 15.7244 | 4450 | 0.0 | - |
| 15.9011 | 4500 | 0.0005 | - |
| 16.0777 | 4550 | 0.0008 | - |
| 16.2544 | 4600 | 0.0001 | - |
| 16.4311 | 4650 | 0.0 | - |
| 16.6078 | 4700 | 0.0 | - |
| 16.7845 | 4750 | 0.0 | - |
| 16.9611 | 4800 | 0.0002 | - |
| 17.1378 | 4850 | 0.0 | - |
| 17.3145 | 4900 | 0.0003 | - |
| 17.4912 | 4950 | 0.0 | - |
| 17.6678 | 5000 | 0.0 | - |
| 17.8445 | 5050 | 0.0 | - |
| 18.0212 | 5100 | 0.0 | - |
| 18.1979 | 5150 | 0.0 | - |
| 18.3746 | 5200 | 0.0 | - |
| 18.5512 | 5250 | 0.0 | - |
| 18.7279 | 5300 | 0.0 | - |
| 18.9046 | 5350 | 0.0 | - |
| 19.0813 | 5400 | 0.0 | - |
| 19.2580 | 5450 | 0.0 | - |
| 19.4346 | 5500 | 0.0 | - |
| 19.6113 | 5550 | 0.0 | - |
| 19.7880 | 5600 | 0.0 | - |
| 19.9647 | 5650 | 0.0 | - |
| 20.1413 | 5700 | 0.0 | - |
| 20.3180 | 5750 | 0.0 | - |
| 20.4947 | 5800 | 0.0 | - |
| 20.6714 | 5850 | 0.0 | - |
| 20.8481 | 5900 | 0.0 | - |
| 21.0247 | 5950 | 0.0 | - |
| 21.2014 | 6000 | 0.0 | - |
| 21.3781 | 6050 | 0.0 | - |
| 21.5548 | 6100 | 0.0 | - |
| 21.7314 | 6150 | 0.0 | - |
| 21.9081 | 6200 | 0.0 | - |
| 22.0848 | 6250 | 0.0 | - |
| 22.2615 | 6300 | 0.0 | - |
| 22.4382 | 6350 | 0.0 | - |
| 22.6148 | 6400 | 0.0 | - |
| 22.7915 | 6450 | 0.0 | - |
| 22.9682 | 6500 | 0.0 | - |
| 23.1449 | 6550 | 0.0 | - |
| 23.3216 | 6600 | 0.0 | - |
| 23.4982 | 6650 | 0.0 | - |
| 23.6749 | 6700 | 0.0 | - |
| 23.8516 | 6750 | 0.0 | - |
| 24.0283 | 6800 | 0.0 | - |
| 24.2049 | 6850 | 0.0 | - |
| 24.3816 | 6900 | 0.0 | - |
| 24.5583 | 6950 | 0.0 | - |
| 24.7350 | 7000 | 0.0 | - |
| 24.9117 | 7050 | 0.0 | - |
| 25.0883 | 7100 | 0.0 | - |
| 25.2650 | 7150 | 0.0 | - |
| 25.4417 | 7200 | 0.0 | - |
| 25.6184 | 7250 | 0.0 | - |
| 25.7951 | 7300 | 0.0 | - |
| 25.9717 | 7350 | 0.0 | - |
| 26.1484 | 7400 | 0.0 | - |
| 26.3251 | 7450 | 0.0 | - |
| 26.5018 | 7500 | 0.0 | - |
| 26.6784 | 7550 | 0.0 | - |
| 26.8551 | 7600 | 0.0 | - |
| 27.0318 | 7650 | 0.0 | - |
| 27.2085 | 7700 | 0.0 | - |
| 27.3852 | 7750 | 0.0 | - |
| 27.5618 | 7800 | 0.0 | - |
| 27.7385 | 7850 | 0.0 | - |
| 27.9152 | 7900 | 0.0 | - |
| 28.0919 | 7950 | 0.0 | - |
| 28.2686 | 8000 | 0.0 | - |
| 28.4452 | 8050 | 0.0 | - |
| 28.6219 | 8100 | 0.0 | - |
| 28.7986 | 8150 | 0.0 | - |
| 28.9753 | 8200 | 0.0 | - |
| 29.1519 | 8250 | 0.0 | - |
| 29.3286 | 8300 | 0.0 | - |
| 29.5053 | 8350 | 0.0 | - |
| 29.6820 | 8400 | 0.0 | - |
| 29.8587 | 8450 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->