metadata
language:
- en
license: mit
model-index:
- name: MoMo-70B-LoRA-V1.4
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.2
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.66
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.74
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.2
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4
name: Open LLM Leaderboard
Introduction
MoMo-72B is trained via Supervised Fine-Tuning (SFT) using LoRA, with the QWEN-72B model as its base-model.
Note that we did not exploit any form of weight merge.
For leaderboard submission, the trained weight is realigned for compatibility with llama.
MoMo-72B is trained using Moreh's MoAI platform, which simplifies the training of large-scale models, and AMD's MI250 GPU.
Details
Used Librarys
- torch
- peft
Used Datasets
- Open-Orca/SlimOrca
- No other dataset was used
- No benchmark test set or the training set are used
- data contamination check result
Model | ARC | MMLU | TruthfulQA | GSM8K |
---|---|---|---|---|
V1.4(result < 0.1, %) | TBU | 0.73 | 0.71 | TBU |
Used Environments
- AMD MI250 & MoAI platform
- Please visit https://moreh.io/product for more information about MoAI platform
- Or, contact us directly [email protected]
How to use
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-LoRA-V1.4")
model = AutoModelForCausalLM.from_pretrained(
"moreh/MoMo-72B-LoRA-V1.4"
)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.67 |
AI2 Reasoning Challenge (25-Shot) | 69.20 |
HellaSwag (10-Shot) | 85.07 |
MMLU (5-Shot) | 77.12 |
TruthfulQA (0-shot) | 62.66 |
Winogrande (5-shot) | 83.74 |
GSM8k (5-shot) | 70.20 |