leaderboard-pr-bot's picture
Adding Evaluation Results
e4f713c verified
|
raw
history blame
5.27 kB
metadata
language:
  - en
license: mit
model-index:
  - name: MoMo-72B-lora-1.8.7-DPO
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 70.82
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.96
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.13
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 74.71
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.06
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.62
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
          name: Open LLM Leaderboard

Introduction

MoMo-72B-lora-1.8.7-DPO is trained via Direct Preference Optimization(DPO) from MoMo-72B-LoRA-V1.4 as its base model, with several optimizations in hyperparameters.
MoMo-72B-LoRA-V1.4 is trained via Supervised Fine-Tuning (SFT) using LoRA, with the QWEN-72B model as its base-model.
Note that we did not exploit any form of weight merge.
For leaderboard submission, the trained weight is realigned for compatibility with llama.
MoMo-72B is trained using Moreh's MoAI platform, which simplifies the training of large-scale models, and AMD's MI250 GPU.

Details

Used Librarys

  • torch
  • peft

Used Datasets

Model ARC MMLU TruthfulQA GSM8K
V1.8.7(result < 0.1, %) TBU TBU 0.44 0.47

Used Environments

How to use

# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-lora-1.8.7-DPO")
model = AutoModelForCausalLM.from_pretrained(
    "moreh/MoMo-72B-lora-1.8.7-DPO"
)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 78.55
AI2 Reasoning Challenge (25-Shot) 70.82
HellaSwag (10-Shot) 85.96
MMLU (5-Shot) 77.13
TruthfulQA (0-shot) 74.71
Winogrande (5-shot) 84.06
GSM8k (5-shot) 78.62