nguyenkhoa's picture
Model save
c7a2ada verified
metadata
library_name: transformers
license: other
base_model: apple/mobilevitv2-1.0-imagenet1k-256
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: mobilevitv2_Liveness_detection_v1.0
    results: []

Visualize in Weights & Biases

mobilevitv2_Liveness_detection_v1.0

This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0046
  • Accuracy: 0.9988
  • F1: 0.9988
  • Recall: 0.9988
  • Precision: 0.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.1093 0.2048 128 0.0679 0.9929 0.9929 0.9929 0.9929
0.0234 0.4096 256 0.0170 0.9962 0.9962 0.9962 0.9962
0.0186 0.6144 384 0.0131 0.9973 0.9973 0.9973 0.9973
0.0068 0.8192 512 0.0089 0.9980 0.9981 0.9980 0.9980
0.0049 1.024 640 0.0067 0.9985 0.9985 0.9985 0.9985
0.0113 1.2288 768 0.0064 0.9983 0.9984 0.9983 0.9983
0.0061 1.4336 896 0.0060 0.9983 0.9983 0.9983 0.9984
0.0025 1.6384 1024 0.0058 0.9983 0.9983 0.9983 0.9984
0.0019 1.8432 1152 0.0053 0.9987 0.9986 0.9987 0.9987
0.0056 2.048 1280 0.0051 0.9987 0.9987 0.9987 0.9987
0.0015 2.2528 1408 0.0050 0.9987 0.9987 0.9987 0.9987
0.0055 2.4576 1536 0.0049 0.9988 0.9987 0.9988 0.9988
0.0023 2.6624 1664 0.0049 0.9989 0.9988 0.9989 0.9989
0.0027 2.8672 1792 0.0046 0.9988 0.9988 0.9988 0.9988

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1