|
--- |
|
language: |
|
- it |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tner/wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
widget: |
|
- text: 'Ciao, sono Giacomo. Vivo a Milano e lavoro da Armani. ' |
|
example_title: Example 1 |
|
- text: 'Domenica andrò allo stadio con Giovanna a guardare la Fiorentina. ' |
|
example_title: Example 2 |
|
base_model: dbmdz/bert-base-italian-cased |
|
model-index: |
|
- name: bert-italian-finetuned-ner |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: wiki_neural |
|
type: wiki_neural |
|
config: it |
|
split: validation |
|
args: it |
|
metrics: |
|
- type: precision |
|
value: 0.9438064759036144 |
|
name: Precision |
|
- type: recall |
|
value: 0.954225352112676 |
|
name: Recall |
|
- type: f1 |
|
value: 0.9489873178118493 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9917883014379933 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-italian-finetuned-ner |
|
|
|
This model is a fine-tuned version of [dbmdz/bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased) on the wiki_neural dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0361 |
|
- Precision: 0.9438 |
|
- Recall: 0.9542 |
|
- F1: 0.9490 |
|
- Accuracy: 0.9918 |
|
|
|
## Model description |
|
|
|
Token classification for italian language experiment, NER. |
|
|
|
### Example |
|
|
|
```python |
|
from transformers import pipeline |
|
ner_pipeline = pipeline("ner", model="nickprock/bert-italian-finetuned-ner", aggregation_strategy="simple") |
|
text = "La sede storica della Olivetti è ad Ivrea" |
|
output = ner_pipeline(text) |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
The model can be used on token classification, in particular NER. It is fine tuned on italian language. |
|
|
|
## Training and evaluation data |
|
|
|
The dataset used is [wikiann](https://huggingface.co/datasets/tner/wikiann) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0297 | 1.0 | 11050 | 0.0323 | 0.9324 | 0.9420 | 0.9372 | 0.9908 | |
|
| 0.0173 | 2.0 | 22100 | 0.0324 | 0.9445 | 0.9514 | 0.9479 | 0.9915 | |
|
| 0.0057 | 3.0 | 33150 | 0.0361 | 0.9438 | 0.9542 | 0.9490 | 0.9918 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.3 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.2 |