whisper-small-ko / README.md
nomnoos37's picture
End of training
afc7938 verified
|
raw
history blame
2.31 kB
metadata
language:
  - ko
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - gglabs/stt-test-1223
metrics:
  - wer
model-index:
  - name: Whisper Small ko
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: custom
          type: gglabs/stt-test-1223
          args: 'config: ko, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 46.19565217391305

Whisper Small ko

This model is a fine-tuned version of openai/whisper-small on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0537
  • Wer: 46.1957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9628 0.0112 10 1.5113 55.4348
1.0128 0.0223 20 1.5033 53.2609
0.7642 0.0335 30 1.4807 48.3696
0.683 0.0446 40 1.4422 47.8261
0.4836 0.0558 50 1.3840 48.3696
0.207 0.0670 60 1.2772 49.4565
0.0984 0.0781 70 1.1608 47.8261
0.1485 0.0893 80 1.1003 45.1087
0.0538 0.1004 90 1.0760 44.5652
0.0349 0.1116 100 1.0537 46.1957

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1