mukaj's picture
Adding Evaluation Results
8ea533a verified
|
raw
history blame
8.89 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - nvidia
  - code
  - math
base_model:
  - mistralai/Mistral-7B-v0.1
datasets:
  - nvidia/OpenMathInstruct-1
model-index:
  - name: OpenMath-Mistral-7B-v0.1-hf
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 59.39
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 81.78
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 59.34
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 46.13
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.27
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0.08
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
          name: Open LLM Leaderboard

OpenMath-Mistral-7B-v0.1-hf

OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks executed by Python interpreter. The models were trained on OpenMathInstruct-1, a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed Mixtral-8x7B model.

greedy majority@50
model GSM8K MATH GMS8K MATH
OpenMath-CodeLlama-7B (nemo | HF) 75.9 43.6 84.8 55.6
OpenMath-Mistral-7B (nemo | HF) 80.2 44.5 86.9 57.2
OpenMath-CodeLlama-13B (nemo | HF) 78.8 45.5 86.8 57.6
OpenMath-CodeLlama-34B (nemo | HF) 80.7 48.3 88.0 60.2
OpenMath-Llama2-70B (nemo | HF) 84.7 46.3 90.1 58.3
OpenMath-CodeLlama-70B (nemo | HF) 84.6 50.7 90.8 60.4

The pipeline we used to produce these models is fully open-sourced!

See our paper for more details!

How to use the models?

Try to run inference with our models with just a few commands!

Reproducing our results

We provide all instructions to fully reproduce our results.

Improving other models

To improve other models or to learn more about our code, read through the docs below.

In our pipeline we use NVIDIA NeMo, an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere. It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, offering enterprises an easy, cost-effective, and fast way to adopt generative AI.

Citation

If you find our work useful, please consider citing us!

@article{toshniwal2024openmath,
  title   = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
  author  = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
  year    = {2024},
  journal = {arXiv preprint arXiv: Arxiv-2402.10176}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 54.00
AI2 Reasoning Challenge (25-Shot) 59.39
HellaSwag (10-Shot) 81.78
MMLU (5-Shot) 59.34
TruthfulQA (0-shot) 46.13
Winogrande (5-shot) 77.27
GSM8k (5-shot) 0.08