mukaj's picture
Adding Evaluation Results
8ea533a verified
|
raw
history blame
8.89 kB
---
language:
- en
license: apache-2.0
tags:
- nvidia
- code
- math
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- nvidia/OpenMathInstruct-1
model-index:
- name: OpenMath-Mistral-7B-v0.1-hf
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.34
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.13
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
name: Open LLM Leaderboard
---
# OpenMath-Mistral-7B-v0.1-hf
OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
[Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
<table border="1">
<tr>
<td></td>
<td colspan="2" style="text-align: center;">greedy</td>
<td colspan="2" style="text-align: center;">majority@50</td>
</tr>
<tr>
<td style="text-align: center;">model</td>
<td style="text-align: center;">GSM8K</td>
<td style="text-align: center;">MATH</td>
<td style="text-align: center;">GMS8K</td>
<td style="text-align: center;">MATH</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
<td style="text-align: center;">75.9</td>
<td style="text-align: center;">43.6</td>
<td style="text-align: center;">84.8</td>
<td style="text-align: center;">55.6</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
<td style="text-align: center;">80.2</td>
<td style="text-align: center;">44.5</td>
<td style="text-align: center;">86.9</td>
<td style="text-align: center;">57.2</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
<td style="text-align: center;">78.8</td>
<td style="text-align: center;">45.5</td>
<td style="text-align: center;">86.8</td>
<td style="text-align: center;">57.6</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
<td style="text-align: center;">80.7</td>
<td style="text-align: center;">48.3</td>
<td style="text-align: center;">88.0</td>
<td style="text-align: center;">60.2</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
<td style="text-align: center;"><b>84.7</b></td>
<td style="text-align: center;">46.3</td>
<td style="text-align: center;">90.1</td>
<td style="text-align: center;">58.3</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
<td style="text-align: center;">84.6</td>
<td style="text-align: center;"><b>50.7</b></td>
<td style="text-align: center;"><b>90.8</b></td>
<td style="text-align: center;"><b>60.4</b></td>
</tr>
</table>
The pipeline we used to produce these models is fully open-sourced!
- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
See our [paper](https://arxiv.org/abs/2402.10176) for more details!
# How to use the models?
Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
# Reproducing our results
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
# Improving other models
To improve other models or to learn more about our code, read through the docs below.
- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
- [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
- [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
- [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
# Citation
If you find our work useful, please consider citing us!
```bibtex
@article{toshniwal2024openmath,
title = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
author = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
year = {2024},
journal = {arXiv preprint arXiv: Arxiv-2402.10176}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nvidia__OpenMath-Mistral-7B-v0.1-hf)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.00|
|AI2 Reasoning Challenge (25-Shot)|59.39|
|HellaSwag (10-Shot) |81.78|
|MMLU (5-Shot) |59.34|
|TruthfulQA (0-shot) |46.13|
|Winogrande (5-shot) |77.27|
|GSM8k (5-shot) | 0.08|