ireneisdoomed's picture
chore: update model
6a3a2c7 verified
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: classifier.skops
widget:
- structuredData:
distanceTssMean:
- 0.005956897512078285
- 0.0535997599363327
- 0.0007216916419565678
distanceTssMinimum:
- 0.00023104190768208355
- 0.008684908039867878
- 0.0
eqtlColocClppMaximum:
- 0.0
- 0.0
- 2.9394341254374012e-05
eqtlColocClppMaximumNeighborhood:
- -1.0844675302505493
- 0.0
- -2.4551262855529785
eqtlColocLlrMaximum:
- 0.0
- 0.0
- -5.864833831787109
eqtlColocLlrMaximumNeighborhood:
- 0.6375470161437988
- 0.0
- -0.6227747797966003
pqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximumNeighborhood:
- -1.75723135471344
- 0.0
- -3.7946090698242188
sqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocLlrMaximumNeighborhood:
- 0.5101715922355652
- 0.0
- 0.5695658922195435
studyLocusId:
- -3543201973216145411
- -4859077617144690060
- -870008257560905822
tuqtlColocClppMaximum:
- 0.014770692214369774
- 0.0
- 0.0
tuqtlColocClppMaximumNeighborhood:
- -2.5447564125061035
- 0.0
- -2.497274160385132
tuqtlColocLlrMaximum:
- 2.057318925857544
- 0.0
- 0.0
tuqtlColocLlrMaximumNeighborhood:
- 0.35586467385292053
- 0.0
- -0.7435243129730225
vepMaximum:
- 0.003306703409180045
- 0.0
- 5.660330498358235e-05
vepMaximumNeighborhood:
- 0.005385574419051409
- 0.0
- 0.026831166818737984
vepMean:
- 0.001106836018152535
- 0.0
- 1.4581254617951345e-05
vepMeanNeighborhood:
- 0.0007926996913738549
- 0.0
- 0.00018241332145407796
---
# Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
## Intended uses & limitations
[More Information Needed]
## Training Procedure
Gradient Boosting Classifier
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|--------------|
| ccp_alpha | 0.0 |
| criterion | friedman_mse |
| init | |
| learning_rate | 0.1 |
| loss | log_loss |
| max_depth | 5 |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 100 |
| n_iter_no_change | |
| random_state | 42 |
| subsample | 1.0 |
| tol | 0.0001 |
| validation_fraction | 0.1 |
| verbose | 0 |
| warm_start | False |
</details>
# How to Get Started with the Model
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the `predict` method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
# Citation
https://doi.org/10.1038/s41588-021-00945-5
# License
MIT