GLuCoSE-base-ja-v2 / README.md
yano0's picture
Update README.md
64f5c2d verified
|
raw
history blame
4.77 kB
metadata
language:
  - ja
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget: []
pipeline_tag: sentence-similarity
datasets:
  - hpprc/emb
  - hpprc/mqa-ja
  - google-research-datasets/paws-x
base_model: pkshatech/GLuCoSE-base-ja

SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: LukeModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pkshatech/GLuCoSE-base-ja-v2")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu118
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Benchmarks

Zero-shot Search

Evaluated with MIRACL-ja, [JQARA][https://huggingface.co/datasets/hotchpotch/JQaRA] and [MLDR-ja][https://huggingface.co/datasets/Shitao/MLDR].

model size MIRACL
Recall@5
JQaRA
nDCG@10
MLDR
nDCG@10
me5-base 0.3B 84.2 47.2 25.4
GLuCoSE 0.1B 53.3 30.8 25.2
GLuCoSE v2 0.1B 85.5 60.6 33.8

JMTEB

Evaluated with [JMTEB][https://github.com/sbintuitions/JMTEB].

  • Time-consuming [‘amazon_review_classification’, ‘mrtydi’, ‘jaqket’, ‘esci’] were excluded and evaluated.
  • The average is a macro-average per task.
model size Class. Ret. STS. Clus. Pair. Avg.
me5-base 0.3B 75.1 80.6 80.5 52.6 62.4 70.2
GLuCoSE 0.1B 82.6 69.8 78.2 51.5 66.2 69.7
GLuCoSE v2 0.1B 80.5 82.8 83.0 49.8 62.4 71.7

Citation

BibTeX