pranay-j's picture
End of training
e8758ba verified
|
raw
history blame
1.93 kB
metadata
language:
  - en
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - google/boolq
metrics:
  - accuracy
model-index:
  - name: Bert Base Uncased Boolean Question Answer model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: boolq
          type: google/boolq
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7149847094801223

Bert Base Uncased Boolean Question Answer model

This model is a fine-tuned version of bert-base-uncased on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1993
  • Accuracy: 0.7150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2317 0.9966 147 0.2198 0.6569
0.2 2.0 295 0.2002 0.6960
0.1741 2.9966 442 0.1968 0.7122
0.1469 3.9864 588 0.1993 0.7150

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1