|
--- |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
base_model: DunnBC22/codebert-base-Malicious_URLs |
|
inference: false |
|
datasets: |
|
- sid321axn/malicious-urls-dataset |
|
tags: |
|
- malicious-urls |
|
- url |
|
--- |
|
|
|
# ONNX version of DunnBC22/codebert-base-Malicious_URLs |
|
|
|
**This model is a conversion of [DunnBC22/codebert-base-Malicious_URLs](https://huggingface.co/DunnBC22/codebert-base-Malicious_URLs) to ONNX** format. It's based on the CodeBERT architecture, tailored for the specific task of identifying URLs that may pose security threats. The model was converted to ONNX using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library. |
|
|
|
## Model Architecture |
|
|
|
**Base Model**: CodeBERT-base, a robust model for programming and natural languages. |
|
|
|
**Dataset**: [https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset](https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset). |
|
|
|
**Modifications**: Details of any modifications or fine-tuning done to tailor the model for malicious URL detection. |
|
|
|
## Usage |
|
|
|
Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed. |
|
|
|
```python |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx") |
|
model = ORTModelForSequenceClassification.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx") |
|
classifier = pipeline( |
|
task="text-classification", |
|
model=model, |
|
tokenizer=tokenizer, |
|
top_k=None, |
|
) |
|
|
|
classifier_output = classifier("https://google.com") |
|
print(classifier_output) |
|
``` |
|
|
|
### LLM Guard |
|
|
|
[Malicious URLs scanner](https://llm-guard.com/output_scanners/malicious_urls/) |
|
|
|
## Community |
|
|
|
Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, |
|
or engage in discussions about LLM security! |
|
|
|
<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w"><img src="https://github.com/laiyer-ai/llm-guard/blob/main/docs/assets/join-our-slack-community.png?raw=true" width="200"></a> |
|
|