metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN
results: []
distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN
This model is a fine-tuned version of distilbert-base-uncased on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set:
- Loss: 0.2324
- Mse: 0.2324
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 90085
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Mse |
---|---|---|---|---|
0.5361 | 0.0288 | 100 | 0.4934 | 0.4934 |
0.3483 | 0.0576 | 200 | 0.3525 | 0.3525 |
0.3238 | 0.0865 | 300 | 0.2931 | 0.2931 |
0.2734 | 0.1153 | 400 | 0.3130 | 0.3130 |
0.2891 | 0.1441 | 500 | 0.3298 | 0.3298 |
0.2807 | 0.1729 | 600 | 0.2659 | 0.2659 |
0.2727 | 0.2018 | 700 | 0.2690 | 0.2690 |
0.2701 | 0.2306 | 800 | 0.2555 | 0.2555 |
0.2954 | 0.2594 | 900 | 0.2501 | 0.2501 |
0.2618 | 0.2882 | 1000 | 0.2483 | 0.2483 |
0.3081 | 0.3171 | 1100 | 0.2456 | 0.2456 |
0.2544 | 0.3459 | 1200 | 0.2370 | 0.2370 |
0.2593 | 0.3747 | 1300 | 0.2349 | 0.2349 |
0.2361 | 0.4035 | 1400 | 0.2406 | 0.2406 |
0.2536 | 0.4324 | 1500 | 0.2453 | 0.2453 |
0.26 | 0.4612 | 1600 | 0.2568 | 0.2568 |
0.2897 | 0.4900 | 1700 | 0.2568 | 0.2568 |
0.2597 | 0.5188 | 1800 | 0.2359 | 0.2359 |
0.2489 | 0.5477 | 1900 | 0.2413 | 0.2413 |
0.2376 | 0.5765 | 2000 | 0.2416 | 0.2416 |
0.2424 | 0.6053 | 2100 | 0.2418 | 0.2418 |
0.2798 | 0.6341 | 2200 | 0.2462 | 0.2462 |
0.2523 | 0.6630 | 2300 | 0.2322 | 0.2322 |
0.286 | 0.6918 | 2400 | 0.2432 | 0.2432 |
0.247 | 0.7206 | 2500 | 0.2383 | 0.2383 |
0.2856 | 0.7494 | 2600 | 0.2375 | 0.2375 |
0.2216 | 0.7783 | 2700 | 0.2383 | 0.2383 |
0.255 | 0.8071 | 2800 | 0.2367 | 0.2367 |
0.2406 | 0.8359 | 2900 | 0.2345 | 0.2345 |
0.2388 | 0.8647 | 3000 | 0.2282 | 0.2282 |
0.2571 | 0.8936 | 3100 | 0.2331 | 0.2331 |
0.2672 | 0.9224 | 3200 | 0.2336 | 0.2336 |
0.2375 | 0.9512 | 3300 | 0.2337 | 0.2337 |
0.2423 | 0.9800 | 3400 | 0.2324 | 0.2324 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1