|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pszemraj/eduscore-regression/runs/k6z0kenz) |
|
# distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2324 |
|
- Mse: 0.2324 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 90085 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 0.5361 | 0.0288 | 100 | 0.4934 | 0.4934 | |
|
| 0.3483 | 0.0576 | 200 | 0.3525 | 0.3525 | |
|
| 0.3238 | 0.0865 | 300 | 0.2931 | 0.2931 | |
|
| 0.2734 | 0.1153 | 400 | 0.3130 | 0.3130 | |
|
| 0.2891 | 0.1441 | 500 | 0.3298 | 0.3298 | |
|
| 0.2807 | 0.1729 | 600 | 0.2659 | 0.2659 | |
|
| 0.2727 | 0.2018 | 700 | 0.2690 | 0.2690 | |
|
| 0.2701 | 0.2306 | 800 | 0.2555 | 0.2555 | |
|
| 0.2954 | 0.2594 | 900 | 0.2501 | 0.2501 | |
|
| 0.2618 | 0.2882 | 1000 | 0.2483 | 0.2483 | |
|
| 0.3081 | 0.3171 | 1100 | 0.2456 | 0.2456 | |
|
| 0.2544 | 0.3459 | 1200 | 0.2370 | 0.2370 | |
|
| 0.2593 | 0.3747 | 1300 | 0.2349 | 0.2349 | |
|
| 0.2361 | 0.4035 | 1400 | 0.2406 | 0.2406 | |
|
| 0.2536 | 0.4324 | 1500 | 0.2453 | 0.2453 | |
|
| 0.26 | 0.4612 | 1600 | 0.2568 | 0.2568 | |
|
| 0.2897 | 0.4900 | 1700 | 0.2568 | 0.2568 | |
|
| 0.2597 | 0.5188 | 1800 | 0.2359 | 0.2359 | |
|
| 0.2489 | 0.5477 | 1900 | 0.2413 | 0.2413 | |
|
| 0.2376 | 0.5765 | 2000 | 0.2416 | 0.2416 | |
|
| 0.2424 | 0.6053 | 2100 | 0.2418 | 0.2418 | |
|
| 0.2798 | 0.6341 | 2200 | 0.2462 | 0.2462 | |
|
| 0.2523 | 0.6630 | 2300 | 0.2322 | 0.2322 | |
|
| 0.286 | 0.6918 | 2400 | 0.2432 | 0.2432 | |
|
| 0.247 | 0.7206 | 2500 | 0.2383 | 0.2383 | |
|
| 0.2856 | 0.7494 | 2600 | 0.2375 | 0.2375 | |
|
| 0.2216 | 0.7783 | 2700 | 0.2383 | 0.2383 | |
|
| 0.255 | 0.8071 | 2800 | 0.2367 | 0.2367 | |
|
| 0.2406 | 0.8359 | 2900 | 0.2345 | 0.2345 | |
|
| 0.2388 | 0.8647 | 3000 | 0.2282 | 0.2282 | |
|
| 0.2571 | 0.8936 | 3100 | 0.2331 | 0.2331 | |
|
| 0.2672 | 0.9224 | 3200 | 0.2336 | 0.2336 | |
|
| 0.2375 | 0.9512 | 3300 | 0.2337 | 0.2337 | |
|
| 0.2423 | 0.9800 | 3400 | 0.2324 | 0.2324 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|