nomic_vortal_v3.4 / README.md
ptpedroVortal's picture
Add new SentenceTransformer model
05a8e5c verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2382
  - loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1
widget:
  - source_sentence: >-
      Collect the details that are associated with product '- Com espessura
      constante de' '- 0,04 m', with quantity 1900, unit M2
    sentences:
      - >-
        Item Description: UNKNOWN PRODUCT, priced at 949.00 EUR, Origin:
        National
      - 'Product: UNKNOWN PRODUCT, Estimated Value: 514.00 EUR'
      - >-
        Details for 'MacBook Pro 14" Processador M2/3 16GB/18GB RAM | SSD 512GB
        | Teclado Es-Es', with quantity 1, unit UN:
          - LOTE 31
          - Price: 656.00 EUR
  - source_sentence: >-
      Collect the details that are associated with Lot 14 product '' 'Monitor de
      Sinais Vitais ', with quantity 2, unit Subcontracting Unit
    sentences:
      - >-
        Details for 'Monitor de Sinais Vitais ', with quantity 2, unit
        Subcontracting Unit:
          - LOTE 60
          - Price: 564.00 EUR
      - |-
        Details for UNKNOWN PRODUCT:
          - LOTE 90
          - Price: 658.00 EUR
      - 'Item Description: UNKNOWN PRODUCT, priced at 90.00 EUR, Origin: National'
  - source_sentence: >-
      Collect the details that are associated with product '' '2202000270 - FIO
      SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF AG. CILIND. 17 MM 1/2 C (UNID)',
      with quantity 288, unit UN
    sentences:
      - >-
        Item Description: '2202000270 - FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0
        MULTIF AG. CILIND. 17 MM 1/2 C (UNID)', with quantity 288, unit UN,
        priced at 66.00 EUR, Origin: National
      - >-
        Product: '2202000285 - FIO SUT. POLIPROPI. NÃO ABS. 4/0 MONOF. AG. LANC.
        16 MM 3/8 (UNID)', with quantity 468, unit UN, Estimated Value: 619.00
        EUR
      - >-
        Item Description: 'Carro transporte de roupa limpa/roupa suja', with
        quantity 1, unit Subcontracting Unit, priced at 574.00 EUR, Origin:
        National
  - source_sentence: >-
      Collect the details that are associated with product '' '2202000006 - FIO
      SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)', with quantity 72, unit
      UN
    sentences:
      - >-
        Item Description: '2202000309 - FIO SUT. ABS. MÉDIO PRAZO 2/0 MONOF.
        BARBADO, C/ AG. CILIND. 30MM 1/2C, 23CM (CART.)', with quantity 24, unit
        UN, priced at 206.00 EUR, Origin: National
      - >-
        Details for '2202000006 - FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA
        (CART.)', with quantity 72, unit UN:
          - LOTE 82
          - Price: 854.00 EUR
      - >-
        LOTE 10

        Description: 'Mesas apoio (anestesia e circulante)', with quantity 4,
        unit Subcontracting Unit

        Price: 117.00 EUR
  - source_sentence: >-
      Collect the details that are associated with product '' '2202000251 - FIO
      SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with
      quantity 144, unit UN
    sentences:
      - |-
        Details for UNKNOWN PRODUCT:
          - LOTE 34
          - Price: 477.00 EUR
      - >-
        Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM
        1/2C 90CM (CART.)', with quantity 144, unit UN:
          - LOTE 73
          - Price: 644.00 EUR
      - >-
        Item Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting
        Unit, priced at 651.00 EUR, Origin: National
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: .nan
            name: Pearson Cosine
          - type: spearman_cosine
            value: .nan
            name: Spearman Cosine

SentenceTransformer based on nomic-ai/nomic-embed-text-v1

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ptpedroVortal/nomic_vortal_v3.4")
# Run inference
sentences = [
    "Collect the details that are associated with product '' '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN",
    "Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN:\n  - LOTE 73\n  - Price: 644.00 EUR",
    "Item Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit, priced at 651.00 EUR, Origin: National",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

  • Evaluated with main.CustomEvaluator
Metric Value
pearson_cosine nan
spearman_cosine nan

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,382 training samples
  • Columns: query, correct_node, and score
  • Approximate statistics based on the first 1000 samples:
    query correct_node score
    type string string int
    details
    • min: 15 tokens
    • mean: 56.3 tokens
    • max: 154 tokens
    • min: 15 tokens
    • mean: 49.65 tokens
    • max: 1729 tokens
    • 1: 100.00%
  • Samples:
    query correct_node score
    Collect the details that are associated with product '' '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN LOTE 98
    Description: '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN
    Price: 940.00 EUR
    1
    Collect the details that are associated with product '' '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN Product: '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN, Estimated Value: 696.00 EUR 1
    Collect the details that are associated with Lot 4 product '' 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit LOTE 44
    Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit
    Price: 542.00 EUR
    1
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 297 evaluation samples
  • Columns: query, correct_node, and score
  • Approximate statistics based on the first 297 samples:
    query correct_node score
    type string string int
    details
    • min: 15 tokens
    • mean: 55.37 tokens
    • max: 154 tokens
    • min: 15 tokens
    • mean: 46.58 tokens
    • max: 435 tokens
    • 1: 100.00%
  • Samples:
    query correct_node score
    Collect the details that are associated with Lot 7 product '' 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit Item Description: 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit, priced at 628.00 EUR, Origin: National 1
    Collect the details that are associated with Lot 10 product '' 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit Details for 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit:
    - LOTE 83
    - Price: 940.00 EUR
    1
    Collect the details that are associated with Lot 1 product '' 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND Product: 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND, Estimated Value: 714.00 EUR 1
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss spearman_cosine
0.6711 100 0.6485 0.4410 nan
1.3356 200 0.5026 0.4399 nan
2.0067 300 0.491 0.4175 nan
2.6711 400 0.442 0.4409 nan
3.3356 500 0.3999 0.4421 nan
4.0067 600 0.367 0.6182 nan
4.6711 700 0.3743 0.6104 nan
5.3356 800 0.1972 0.6115 nan
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.0.dev0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}