rzaba's picture
updated model path in the examples
061537f verified
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
language:
  - pl
license: cc-by-sa-4.0
library_name: sentence-transformers
datasets:
  - radlab/polish-sts-dataset
models:
  - sdadas/polish-roberta-large-v2

pkedzia/polish-bi-encoder

This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Tis model is the newest version of radlab/polish-sts-v2 model.

As a base model sdadas/polish-roberta-large-v2 model was used.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ['Ala ma kota i psa, widzi dzisiaj też śnieg', 'Ewa ma białe zęby']

model = SentenceTransformer('radlab/polish-bi-encoder-mean')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['Ala ma kota i psa, widzi dzisiaj też śnieg', 'Ewa ma białe zęby']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('radlab/polish-bi-encoder-mean')
model = AutoModel.from_pretrained('radlab/polish-bi-encoder-mean')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

image/png

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 502 with parameters:

{'batch_size': 12, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 4,
    "evaluation_steps": 60,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 3e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 201,
    "weight_decay": 0.001
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors