File size: 3,769 Bytes
ed34779
 
 
 
 
 
 
7f91956
 
e591d17
7f91956
 
 
cb7b812
 
ed34779
 
cb7b812
ed34779
 
 
6605159
e591d17
 
ed34779
 
 
 
 
 
 
 
 
 
 
 
 
7f91956
ed34779
cb7b812
ed34779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f91956
ed34779
 
cb7b812
 
ed34779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef29aa0
ed34779
ef29aa0
ed34779
 
 
 
 
 
 
 
 
 
ef29aa0
ed34779
 
 
 
 
 
 
 
ef29aa0
ed34779
 
 
 
 
 
 
 
 
 
 
e591d17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- pl
license: cc-by-sa-4.0
library_name: sentence-transformers
datasets:
- radlab/polish-sts-dataset
models:
- sdadas/polish-roberta-large-v2
---

# radlab/polish-sts-v2

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

As a base model `sdadas/polish-roberta-large-v2` model was used. 

This model is **deprecated** and has been replaced by [radlab/polish-bi-encoder-mean](https://huggingface.co/radlab/polish-bi-encoder-mean).

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Ala ma kota", "Ala ma psa"]

model = SentenceTransformer('radlab/polish-sts-v2')
embeddings = model.encode(sentences)
print(embeddings)
```


## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['Ala ma kota', 'Ala ma psa']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('radlab/polish-sts-v2')
model = AutoModel.from_pretrained('radlab/polish-sts-v2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 8225 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 5,
    "evaluation_steps": 250,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 4113,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```