|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-xsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xsum |
|
type: xsum |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 26.2006 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-xsum |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6282 |
|
- Rouge1: 26.2006 |
|
- Rouge2: 6.4986 |
|
- Rougel: 20.4525 |
|
- Rougelsum: 20.4233 |
|
- Gen Len: 18.791 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 3.0796 | 1.0 | 500 | 2.6971 | 23.5102 | 5.0088 | 18.4369 | 18.4317 | 18.719 | |
|
| 2.8953 | 2.0 | 1000 | 2.6563 | 25.1823 | 5.9526 | 19.6696 | 19.6505 | 18.779 | |
|
| 2.8527 | 3.0 | 1500 | 2.6393 | 25.7775 | 6.2129 | 20.1822 | 20.1652 | 18.79 | |
|
| 2.8301 | 4.0 | 2000 | 2.6307 | 25.899 | 6.2538 | 20.2373 | 20.222 | 18.802 | |
|
| 2.8158 | 5.0 | 2500 | 2.6282 | 26.2006 | 6.4986 | 20.4525 | 20.4233 | 18.791 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|