Mistral-portuguese-luana-7b
This model was trained with a superset of 200,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama 2 13b in Portuguese, the model was adjusted mainly for instructional tasks. The model comes from the idea of helping to fill the need for Portuguese language models.
How to use
You can use the model in its normal form up to 4-bit or 8-bit quantization. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better.
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama-portuguese-13b-Luana-v0.2", quantization_config=bnb_config, device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama-portuguese-13b-Luana-v0.2")
model.eval()
You can use with Pipeline but in this example i will use such as Streaming
inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto.
Escreva uma resposta que complete adequadamente o pedido.
### instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4.
[/INST]"""], return_tensors="pt")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Average | 48.83 |
ENEM Challenge (No Images) | 36.95 |
BLUEX (No Images) | 32.68 |
OAB Exams | 33.30 |
Assin2 RTE | 65.83 |
Assin2 STS | 42.81 |
FaQuAD NLI | 40.44 |
HateBR Binary | 83.62 |
PT Hate Speech Binary | 54.62 |
tweetSentBR | 49.25 |
Comments
Any idea, help or report will always be welcome.
email: [email protected]
- Downloads last month
- 61
Model tree for rhaymison/Llama-portuguese-13b-Luana-v0.2
Datasets used to train rhaymison/Llama-portuguese-13b-Luana-v0.2
Space using rhaymison/Llama-portuguese-13b-Luana-v0.2 1
Evaluation results
- accuracy on ENEM Challenge (No Images)Open Portuguese LLM Leaderboard36.950
- accuracy on BLUEX (No Images)Open Portuguese LLM Leaderboard32.680
- accuracy on OAB ExamsOpen Portuguese LLM Leaderboard33.300
- f1-macro on Assin2 RTEtest set Open Portuguese LLM Leaderboard65.830
- pearson on Assin2 STStest set Open Portuguese LLM Leaderboard42.810
- f1-macro on FaQuAD NLItest set Open Portuguese LLM Leaderboard40.440
- f1-macro on HateBR Binarytest set Open Portuguese LLM Leaderboard83.620
- f1-macro on PT Hate Speech Binarytest set Open Portuguese LLM Leaderboard54.620
- f1-macro on tweetSentBRtest set Open Portuguese LLM Leaderboard49.250