rhaymison's picture
Update README.md
02874be verified
metadata
language:
  - pt
license: apache-2.0
library_name: transformers
tags:
  - Misral
  - Portuguese
  - 7b
base_model: meta-llama/Llama-2-13b-chat-hf
datasets:
  - pablo-moreira/gpt4all-j-prompt-generations-pt
  - rhaymison/superset
pipeline_tag: text-generation
model-index:
  - name: Llama-portuguese-13b-Luana-v0.2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 36.95
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 32.68
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 33.3
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 65.83
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 42.81
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 40.44
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 83.62
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 54.62
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia-temp/tweetsentbr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 49.25
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-portuguese-13b-Luana-v0.2
          name: Open Portuguese LLM Leaderboard

Mistral-portuguese-luana-7b

This model was trained with a superset of 200,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama 2 13b in Portuguese, the model was adjusted mainly for instructional tasks. The model comes from the idea of helping to fill the need for Portuguese language models.

How to use

You can use the model in its normal form up to 4-bit or 8-bit quantization. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better.

!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes

from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama-portuguese-13b-Luana-v0.2", quantization_config=bnb_config, device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama-portuguese-13b-Luana-v0.2")
model.eval()

You can use with Pipeline but in this example i will use such as Streaming


inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto.
Escreva uma resposta que complete adequadamente o pedido.
### instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4.
[/INST]"""], return_tensors="pt")

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Average 48.83
ENEM Challenge (No Images) 36.95
BLUEX (No Images) 32.68
OAB Exams 33.30
Assin2 RTE 65.83
Assin2 STS 42.81
FaQuAD NLI 40.44
HateBR Binary 83.62
PT Hate Speech Binary 54.62
tweetSentBR 49.25

Comments

Any idea, help or report will always be welcome.

email: [email protected]