|
--- |
|
license: apache-2.0 |
|
base_model: sshleifer/distilbart-xsum-12-6 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-abs-1509-0313-lr-3e-05-bs-2-maxep-6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-abs-1509-0313-lr-3e-05-bs-2-maxep-6 |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.3486 |
|
- Rouge/rouge1: 0.4705 |
|
- Rouge/rouge2: 0.2108 |
|
- Rouge/rougel: 0.3877 |
|
- Rouge/rougelsum: 0.3894 |
|
- Bertscore/bertscore-precision: 0.8936 |
|
- Bertscore/bertscore-recall: 0.8936 |
|
- Bertscore/bertscore-f1: 0.8934 |
|
- Meteor: 0.4277 |
|
- Gen Len: 38.4091 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| |
|
| 1.1204 | 1.0 | 434 | 2.2199 | 0.4542 | 0.2173 | 0.3843 | 0.3855 | 0.8945 | 0.8893 | 0.8917 | 0.4072 | 37.2273 | |
|
| 0.8222 | 2.0 | 868 | 2.3549 | 0.4613 | 0.2095 | 0.3935 | 0.3957 | 0.8994 | 0.8929 | 0.896 | 0.4089 | 36.8818 | |
|
| 0.565 | 3.0 | 1302 | 2.6652 | 0.4686 | 0.2079 | 0.3905 | 0.3911 | 0.8943 | 0.8941 | 0.894 | 0.4207 | 39.6636 | |
|
| 0.379 | 4.0 | 1736 | 2.9239 | 0.4614 | 0.2076 | 0.3937 | 0.3951 | 0.8962 | 0.8898 | 0.8928 | 0.401 | 34.8545 | |
|
| 0.2543 | 5.0 | 2170 | 3.1849 | 0.4629 | 0.2086 | 0.3988 | 0.3998 | 0.8958 | 0.8914 | 0.8935 | 0.4076 | 36.1091 | |
|
| 0.1761 | 6.0 | 2604 | 3.3486 | 0.4705 | 0.2108 | 0.3877 | 0.3894 | 0.8936 | 0.8936 | 0.8934 | 0.4277 | 38.4091 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|