metadata
license: apache-2.0
language:
- en
base_model: bencyc1129/mitre-bert-base-cased
pipeline_tag: text-classification
widget:
- text: An attacker performs a SQL injection.
MITRE-tactic-bert-case-based
It's a fine-tuned model from mitre-bert-base-cased on the MITRE version 13 procedure dataset. It achieves
- loss:0.057
- accuracy:0.87
on evaluation dataset.
Intended uses & limitations
You can use the fine-tuned model for text classification. It aims to identify the tactic that the sentence belongs to in MITRE ATT&CK framework. A sentence or an attack may fall into several tactics.
Note that this model is primarily fine-tuned on text classification for cybersecurity. It may not perform well if the sentence is not related to attacks.
How to use
You can use the model with Tensorflow.
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_id = "sarahwei/MITRE-tactic-bert-case-based"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
# device_map="auto",
)
question = 'An attacker performs a SQL injection.'
input_ids = tokenizer(question,return_tensors="pt")
outputs = model(**input_ids)
logits = outputs.logits
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
predicted_labels = [model.config.id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
Training procedure
Training parameter
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- warmup_ratio: 0.01
- weight_decay: 0.001
Training results
Step | Training Loss | Validation Loss | F1 | Roc AUC | accuracy |
---|---|---|---|---|---|
100 | 0.409400 | 0.142982 | 0.740000 | 0.803830 | 0.610000 |
200 | 0.106500 | 0.093503 | 0.818182 | 0.868382 | 0.720000 |
300 | 0.070200 | 0.065937 | 0.893617 | 0.930366 | 0.810000 |
400 | 0.045500 | 0.061865 | 0.892704 | 0.926625 | 0.830000 |
500 | 0.033600 | 0.057814 | 0.902954 | 0.938630 | 0.860000 |
600 | 0.026000 | 0.062982 | 0.894515 | 0.934107 | 0.840000 |
700 | 0.021900 | 0.056275 | 0.904564 | 0.946113 | 0.870000 |
800 | 0.017700 | 0.061058 | 0.887967 | 0.937067 | 0.860000 |
900 | 0.016100 | 0.058965 | 0.890756 | 0.933716 | 0.870000 |
1000 | 0.014200 | 0.055885 | 0.903766 | 0.942372 | 0.880000 |
1100 | 0.013200 | 0.056888 | 0.895397 | 0.937849 | 0.880000 |
1200 | 0.012700 | 0.057484 | 0.895397 | 0.937849 | 0.870000 |