sergiocannata's picture
update model card README.md
627970c
|
raw
history blame
4.31 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: dit-base-finetuned-brs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8235294117647058
          - name: F1
            type: f1
            value: 0.8421052631578948

dit-base-finetuned-brs

This model is a fine-tuned version of microsoft/dit-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2679
  • Accuracy: 0.8235
  • F1: 0.8421
  • Precision (ppv): 0.8889
  • Recall (sensitivity): 0.8
  • Specificity: 0.8571
  • Npv: 0.75
  • Auc: 0.8286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision (ppv) Recall (sensitivity) Specificity Npv Auc
0.6951 6.25 100 0.7100 0.4706 0.4 0.6 0.3 0.7143 0.4167 0.5071
0.5094 12.49 200 0.6511 0.5294 0.6 0.6 0.6 0.4286 0.4286 0.5143
0.5338 18.74 300 0.6113 0.6471 0.6667 0.75 0.6 0.7143 0.5556 0.6571
0.444 24.98 400 0.7057 0.6471 0.625 0.8333 0.5 0.8571 0.5455 0.6786
0.3877 31.25 500 0.7836 0.7059 0.7368 0.7778 0.7 0.7143 0.625 0.7071
0.6238 37.49 600 0.8340 0.7059 0.6667 1.0 0.5 1.0 0.5833 0.75
0.6856 43.74 700 1.0278 0.7647 0.8000 0.8 0.8 0.7143 0.7143 0.7571
0.487 49.98 800 1.0279 0.7647 0.7778 0.875 0.7 0.8571 0.6667 0.7786
0.4039 56.25 900 0.9028 0.7647 0.7778 0.875 0.7 0.8571 0.6667 0.7786
0.2214 62.49 1000 0.6894 0.8235 0.8235 1.0 0.7 1.0 0.7 0.85
0.7441 68.74 1100 1.1261 0.8235 0.8421 0.8889 0.8 0.8571 0.75 0.8286
0.5714 74.98 1200 0.8956 0.8235 0.8235 1.0 0.7 1.0 0.7 0.85
0.3093 81.25 1300 1.2498 0.7059 0.7059 0.8571 0.6 0.8571 0.6 0.7286
0.6528 87.49 1400 1.6744 0.7647 0.7778 0.875 0.7 0.8571 0.6667 0.7786
0.3314 93.74 1500 1.8034 0.7059 0.7059 0.8571 0.6 0.8571 0.6 0.7286
0.3617 99.98 1600 1.2679 0.8235 0.8421 0.8889 0.8 0.8571 0.75 0.8286

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1