shahadalll's picture
End of training
5a6ae8b verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: videomae-base-finetuned-ucf-crimevbinary-balanced-vwandb
    results: []

videomae-base-finetuned-ucf-crimevbinary-balanced-vwandb

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2106
  • Accuracy: 0.9444
  • Precision: 0.9444
  • Recall: 0.9444
  • Auc: 0.9815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Auc
0.6542 1.0 29 0.6413 0.6389 0.7217 0.6389 0.8056
0.574 2.0 58 0.5412 0.75 0.7945 0.75 0.8827
0.4214 3.0 87 0.4414 0.8611 0.8714 0.8611 0.9228
0.4331 4.0 116 0.4604 0.8056 0.8311 0.8056 0.8889
0.2981 5.0 145 0.3923 0.8889 0.8937 0.8889 0.9321
0.2615 6.0 174 0.5136 0.8333 0.8506 0.8333 0.8735
0.1896 7.0 203 0.4989 0.8889 0.9091 0.8889 0.9105
0.5031 8.0 232 0.3814 0.9167 0.9180 0.9167 0.9321
0.0947 9.0 261 0.4635 0.8889 0.8937 0.8889 0.9290
0.3865 10.0 290 0.5199 0.8889 0.9091 0.8889 0.8951
0.187 11.0 319 0.6748 0.8611 0.8622 0.8611 0.9136
0.0408 12.0 348 1.0193 0.8056 0.8143 0.8056 0.9012
0.3851 13.0 377 0.3708 0.8889 0.8889 0.8889 0.9630

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3