|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: videomae-base-finetuned-ucf-crimevbinary-balanced-vwandb |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-ucf-crimevbinary-balanced-vwandb |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2106 |
|
- Accuracy: 0.9444 |
|
- Precision: 0.9444 |
|
- Recall: 0.9444 |
|
- Auc: 0.9815 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6542 | 1.0 | 29 | 0.6413 | 0.6389 | 0.7217 | 0.6389 | 0.8056 | |
|
| 0.574 | 2.0 | 58 | 0.5412 | 0.75 | 0.7945 | 0.75 | 0.8827 | |
|
| 0.4214 | 3.0 | 87 | 0.4414 | 0.8611 | 0.8714 | 0.8611 | 0.9228 | |
|
| 0.4331 | 4.0 | 116 | 0.4604 | 0.8056 | 0.8311 | 0.8056 | 0.8889 | |
|
| 0.2981 | 5.0 | 145 | 0.3923 | 0.8889 | 0.8937 | 0.8889 | 0.9321 | |
|
| 0.2615 | 6.0 | 174 | 0.5136 | 0.8333 | 0.8506 | 0.8333 | 0.8735 | |
|
| 0.1896 | 7.0 | 203 | 0.4989 | 0.8889 | 0.9091 | 0.8889 | 0.9105 | |
|
| 0.5031 | 8.0 | 232 | 0.3814 | 0.9167 | 0.9180 | 0.9167 | 0.9321 | |
|
| 0.0947 | 9.0 | 261 | 0.4635 | 0.8889 | 0.8937 | 0.8889 | 0.9290 | |
|
| 0.3865 | 10.0 | 290 | 0.5199 | 0.8889 | 0.9091 | 0.8889 | 0.8951 | |
|
| 0.187 | 11.0 | 319 | 0.6748 | 0.8611 | 0.8622 | 0.8611 | 0.9136 | |
|
| 0.0408 | 12.0 | 348 | 1.0193 | 0.8056 | 0.8143 | 0.8056 | 0.9012 | |
|
| 0.3851 | 13.0 | 377 | 0.3708 | 0.8889 | 0.8889 | 0.8889 | 0.9630 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0.dev0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|