|
--- |
|
pipeline_tag: sentence-similarity |
|
license: apache-2.0 |
|
tags: |
|
- text2vec |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
--- |
|
# shibing624/text2vec |
|
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
## Usage (text2vec) |
|
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed: |
|
``` |
|
pip install -U text2vec |
|
``` |
|
Then you can use the model like this: |
|
```python |
|
from text2vec import SBert |
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] |
|
|
|
model = SBert('shibing624/text2vec-base-chinese') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
## Usage (HuggingFace Transformers) |
|
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
```python |
|
from transformers import BertTokenizer, BertModel |
|
import torch |
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese') |
|
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese') |
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] |
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
# Perform pooling. In this case, max pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
## Evaluation Results |
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec) |
|
|
|
## Full Model Architecture |
|
``` |
|
SBert( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True}) |
|
) |
|
``` |
|
## Citing & Authors |
|
This model was trained by [text2vec/cosent](https://github.com/shibing624/text2vec/cosent). |
|
|
|
If you find this model helpful, feel free to cite: |
|
```bibtex |
|
@software{text2vec, |
|
author = {Xu Ming}, |
|
title = {text2vec: A Tool for Text to Vector}, |
|
year = {2022}, |
|
url = {https://github.com/shibing624/text2vec}, |
|
} |
|
``` |
|
|