|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from transformers import CLIPTokenizer |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"UnfilteredAI/NSFW-Flux-v1", |
|
torch_dtype=dtype |
|
).to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
MAX_TOKENS = 77 |
|
|
|
def truncate_prompt(prompt): |
|
"""Truncate the prompt to fit within CLIP's token limit""" |
|
tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS) |
|
return tokenizer.decode(tokens) |
|
|
|
@spaces.GPU() |
|
def infer( |
|
prompt, |
|
seed=42, |
|
randomize_seed=False, |
|
width=1024, |
|
height=1024, |
|
num_inference_steps=4, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
|
|
truncated_prompt = truncate_prompt(prompt) |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
try: |
|
image = pipe( |
|
prompt=truncated_prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
guidance_scale=0.0 |
|
).images[0] |
|
|
|
return image, seed |
|
except Exception as e: |
|
raise gr.Error(f"Error generating image: {str(e)}") |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(""" |
|
NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer |
|
capable of generating images from text descriptions. |
|
Finetuned by UnfilteredAI, this model is designed to produce |
|
a wide range of images, including explicit and NSFW |
|
(Not Safe For Work) images from textual inputs. |
|
|
|
Note: Long prompts will be automatically truncated to fit the model's requirements. |
|
""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=4, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=infer, |
|
inputs=[prompt], |
|
outputs=[result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
num_inference_steps |
|
], |
|
outputs=[result, seed] |
|
) |
|
|
|
demo.launch() |