NSFW-FLUX / app.py
Aarifkhan's picture
Update app.py
2d69d95 verified
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import CLIPTokenizer
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize CLIP tokenizer for prompt length checking
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
pipe = DiffusionPipeline.from_pretrained(
"UnfilteredAI/NSFW-Flux-v1",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MAX_TOKENS = 77 # CLIP's maximum token length
def truncate_prompt(prompt):
"""Truncate the prompt to fit within CLIP's token limit"""
tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS)
return tokenizer.decode(tokens)
@spaces.GPU()
def infer(
prompt,
seed=42,
randomize_seed=False,
width=1024,
height=1024,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)
):
# Truncate prompt if necessary
truncated_prompt = truncate_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=truncated_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
except Exception as e:
raise gr.Error(f"Error generating image: {str(e)}")
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer
capable of generating images from text descriptions.
Finetuned by UnfilteredAI, this model is designed to produce
a wide range of images, including explicit and NSFW
(Not Safe For Work) images from textual inputs.
Note: Long prompts will be automatically truncated to fit the model's requirements.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps
],
outputs=[result, seed]
)
demo.launch()