|
import gradio as gr |
|
import cv2 |
|
import time |
|
import openai |
|
import base64 |
|
import pytz |
|
import uuid |
|
from threading import Thread |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from datetime import datetime |
|
import json |
|
import os |
|
from moviepy.editor import ImageSequenceClip |
|
from gradio_client import Client, file |
|
import subprocess |
|
|
|
api_key = os.getenv("OPEN_AI_KEY") |
|
user_name = os.getenv("USER_NAME") |
|
password = os.getenv("PASSWORD") |
|
|
|
LENGTH = 3 |
|
WEBCAM = 0 |
|
|
|
MARKDOWN = """ |
|
# Conntour |
|
""" |
|
AVATARS = ( |
|
"https://assets-global.website-files.com/63d6dca820934a77a340f31e/63dfb7a21b4c08282d524010_pyramid.png", |
|
"https://media.roboflow.com/spaces/openai-white-logomark.png" |
|
) |
|
|
|
|
|
openai.api_key = api_key |
|
MODEL="gpt-4o" |
|
client = openai.OpenAI(api_key=api_key) |
|
|
|
|
|
stop_capture = False |
|
alerts_mode = True |
|
|
|
def clip_video_segment(input_video_path, start_time, duration): |
|
os.makedirs('videos', exist_ok=True) |
|
output_video_path = f"videos/{uuid.uuid4()}.mp4" |
|
|
|
subprocess.call([ |
|
'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path, |
|
'-t', str(duration), '-c', 'copy', output_video_path |
|
]) |
|
|
|
return output_video_path |
|
|
|
def encode_to_video_fast(frames, fps): |
|
|
|
os.makedirs('videos', exist_ok=True) |
|
video_clip_path = f"videos/{uuid.uuid4()}.mp4" |
|
|
|
|
|
height, width, layers = frames[0].shape |
|
size = (width, height) |
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'h264') |
|
out = cv2.VideoWriter(video_clip_path, fourcc, fps, size) |
|
|
|
for frame in frames: |
|
out.write(frame) |
|
|
|
out.release() |
|
|
|
return video_clip_path |
|
|
|
|
|
def encode_to_video(frames, fps): |
|
os.makedirs('videos', exist_ok=True) |
|
video_clip_path = f"videos/{uuid.uuid4()}.mp4" |
|
|
|
|
|
clip = ImageSequenceClip([frame[:, :, ::-1] for frame in frames], fps=fps) |
|
clip.write_videofile(video_clip_path, codec="libx264") |
|
|
|
|
|
with open(video_clip_path, "rb") as video_file: |
|
video_data = base64.b64encode(video_file.read()).decode('utf-8') |
|
|
|
return video_clip_path |
|
|
|
|
|
def process_frames(frames, frames_to_skip = 1): |
|
os.makedirs('saved_frames', exist_ok=True) |
|
curr_frame=0 |
|
base64Frames = [] |
|
while curr_frame < len(frames) - 1: |
|
_, buffer = cv2.imencode(".jpg", frames[curr_frame]) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
return base64Frames |
|
|
|
|
|
def check_condition(prompt, base64Frames): |
|
start_time = time.time() |
|
print('checking condition for frames:', len(base64Frames)) |
|
|
|
|
|
|
|
|
|
messages = [ |
|
{"role": "system", "content": """You are analyzing video to check if the user's condition is met. |
|
Please respond with a JSON object in the following format: |
|
{"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""}, |
|
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]} |
|
] |
|
|
|
response = client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=messages, |
|
temperature=0, |
|
response_format={ "type": "json_object" } |
|
) |
|
|
|
end_time = time.time() |
|
processing_time = end_time - start_time |
|
frames_count = len(base64Frames) |
|
api_response = response.choices[0].message.content |
|
try: |
|
jsonNew = json.loads(api_response) |
|
print('result', response.usage.total_tokens, jsonNew) |
|
return frames_count, processing_time, jsonNew |
|
except: |
|
print('result', response.usage.total_tokens, api_response) |
|
return frames_count, processing_time, api_response |
|
|
|
|
|
|
|
def process_clip(prompt, frames, chatbot): |
|
|
|
israel_tz = pytz.timezone('Asia/Jerusalem') |
|
start_time = datetime.now(israel_tz).strftime('%H:%M:%S') |
|
print("[Start]:", start_time, len(frames)) |
|
|
|
|
|
fps = int(len(frames) / LENGTH) |
|
base64Frames = process_frames(frames, fps) |
|
frames_count, processing_time, api_response = check_condition(prompt, base64Frames) |
|
|
|
if api_response["condition_met"] == True: |
|
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S') |
|
video_clip_path = encode_to_video_fast(frames, fps) |
|
chatbot.append(((video_clip_path,), None)) |
|
result = f"Time: {start_time}\n" |
|
chatbot.append((result, None)) |
|
|
|
frame_paths = [] |
|
for i, base64_frame in enumerate(base64Frames): |
|
frame_data = base64.b64decode(base64_frame) |
|
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg' |
|
with open(frame_path, "wb") as f: |
|
f.write(frame_data) |
|
frame_paths.append(frame_path) |
|
|
|
def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id): |
|
global stop_capture |
|
if not stop_capture: |
|
israel_tz = pytz.timezone('Asia/Jerusalem') |
|
start_time = datetime.now(israel_tz).strftime('%H:%M:%S') |
|
print("[Start]:", start_time, len(frames)) |
|
|
|
frames_to_skip = int(fps) |
|
base64Frames = process_frames(frames, frames_to_skip) |
|
frames_count, processing_time, api_response = check_condition(prompt, base64Frames) |
|
|
|
result = None |
|
if api_response and api_response.get("condition_met", False): |
|
|
|
video_clip_path = clip_video_segment(video_path, id*LENGTH, LENGTH) |
|
chatbot.append(((video_clip_path,), None)) |
|
chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None)) |
|
|
|
return chatbot |
|
|
|
|
|
def analyze_stream(prompt, stream, chatbot): |
|
global stop_capture |
|
stop_capture = False |
|
|
|
|
|
cap = cv2.VideoCapture(stream or WEBCAM) |
|
|
|
frames = [] |
|
start_time = time.time() |
|
while not stop_capture: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frames.append(frame) |
|
|
|
|
|
if time.time() - start_time >= LENGTH: |
|
|
|
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot,)).start() |
|
frames = [] |
|
start_time = time.time() |
|
yield chatbot |
|
|
|
cap.release() |
|
return chatbot |
|
|
|
def analyze_video_file(prompt, video_path, chatbot): |
|
global stop_capture |
|
stop_capture = False |
|
|
|
cap = cv2.VideoCapture(video_path) |
|
|
|
|
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
frames_per_chunk = fps * LENGTH |
|
|
|
frames = [] |
|
chunk = 0 |
|
|
|
|
|
with ThreadPoolExecutor(max_workers=6) as executor: |
|
futures = [] |
|
|
|
while not stop_capture: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frames.append(frame) |
|
|
|
|
|
if len(frames) >= frames_per_chunk: |
|
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk)) |
|
frames = [] |
|
chunk+=1 |
|
|
|
|
|
if len(frames) > 0: |
|
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk)) |
|
chunk+=1 |
|
|
|
cap.release() |
|
|
|
for future in as_completed(futures): |
|
result = future.result() |
|
yield result |
|
return chatbot |
|
|
|
|
|
|
|
def stop_capture_func(): |
|
global stop_capture |
|
stop_capture = True |
|
|
|
|
|
with gr.Blocks(title="Conntour", fill_height=True) as demo: |
|
with gr.Tab("Analyze"): |
|
with gr.Row(): |
|
video = gr.Video(label="Video Source") |
|
with gr.Column(): |
|
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS) |
|
prompt = gr.Textbox(label="Enter your prompt alert") |
|
start_btn = gr.Button("Start") |
|
stop_btn = gr.Button("Stop") |
|
start_btn.click(analyze_video_file, inputs=[prompt, video, chatbot], outputs=[chatbot], queue=True) |
|
stop_btn.click(stop_capture_func) |
|
with gr.Tab("Alerts"): |
|
with gr.Row(): |
|
stream = gr.Textbox(label="Video Source", value="https://streamapi2.eu.loclx.io/video_feed/101 OR rtsp://admin:[email protected]:5678/Streaming/Channels/101") |
|
with gr.Column(): |
|
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS) |
|
prompt = gr.Textbox(label="Enter your prompt alert") |
|
start_btn = gr.Button("Start") |
|
stop_btn = gr.Button("Stop") |
|
start_btn.click(analyze_stream, inputs=[prompt, stream, chatbot], outputs=[chatbot], queue=True) |
|
stop_btn.click(stop_capture_func) |
|
|
|
demo.launch(favicon_path='favicon.ico', auth=(user_name, password)) |