File size: 12,803 Bytes
ab4fd59
aa35242
4a21329
 
 
 
 
4183bd3
4a21329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d125e9a
 
 
 
 
4a21329
d125e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a21329
 
d125e9a
4a21329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2b7bc
4a21329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a71f5
4a21329
dac5e9b
e91c92a
4a21329
dac5e9b
 
 
 
 
4a21329
 
 
dac5e9b
4a21329
 
 
 
 
 
 
 
dac5e9b
4a21329
 
 
 
dac5e9b
 
 
 
 
 
 
 
 
 
 
 
4a21329
dac5e9b
 
 
 
 
 
 
 
 
 
 
 
 
4a21329
 
dac5e9b
4a21329
 
3a2b7bc
4a21329
dac5e9b
3a2b7bc
18d4be8
3a2b7bc
915d8ef
057ab31
915d8ef
18d4be8
 
 
 
 
 
3a2b7bc
 
915d8ef
 
 
 
 
 
 
 
 
 
 
3a2b7bc
915d8ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d4be8
915d8ef
d125e9a
 
 
aa35242
1d52ab6
3a2b7bc
 
 
 
 
 
 
 
915d8ef
3a2b7bc
1d52ab6
3a2b7bc
 
915d8ef
3a2b7bc
 
 
 
25e2b6c
3a2b7bc
 
 
 
 
915d8ef
3a2b7bc
 
 
 
 
 
4a21329
18a71f5
915d8ef
18d4be8
 
 
 
 
 
915d8ef
 
 
 
18d4be8
915d8ef
3a2b7bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import gradio as gr
import numpy as np
import cv2
import librosa
import speech_recognition as sr
import tempfile
import wave
import optimum
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.models import load_model, model_from_json
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import pickle
import json
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from collections import Counter
from pydub import AudioSegment
import ffmpeg

nltk.download('punkt')       # Tokenizer
nltk.download('wordnet')     # WordNet lemmatizer
nltk.download('stopwords')   # Stopwords

# Load the text model
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
    model_json = json_file.read()
text_model = model_from_json(model_json)
text_model.load_weights("model_for_text_emotion_updated(1).keras")

# Load the encoder and scaler for audio
with open('encoder.pkl', 'rb') as file:
    encoder = pickle.load(file)
with open('scaler.pkl', 'rb') as file:
    scaler = pickle.load(file)

# Load the tokenizer for text
with open('tokenizer.json') as json_file:
    tokenizer_json = json.load(json_file)
tokenizer = tokenizer_from_json(tokenizer_json)

# Load the audio model
audio_model = load_model('my_model.h5')

# Load the image model
image_model = load_model('model_emotion.h5')

# Initialize NLTK
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))

# Preprocess text function
def preprocess_text(text):
    tokens = nltk.word_tokenize(text.lower())
    tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
    lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
    return ' '.join(lemmatized_tokens)

# Extract features from audio
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T

def extract_features(data, sample_rate):
    # List to collect all features
    features = []

    # Zero Crossing Rate (ZCR)
    zcr = T.ZeroCrossingRate()(data)
    features.append(torch.mean(zcr).numpy())

    # Chroma Short-Time Fourier Transform (STFT)
    stft = T.MelSpectrogram(sample_rate)(data)
    chroma_stft = torch.mean(stft, dim=-1).numpy()  # Take mean across the time dimension
    features.append(chroma_stft)

    # Mel Frequency Cepstral Coefficients (MFCC)
    mfcc_transform = T.MFCC(sample_rate=sample_rate, melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23})
    mfcc = mfcc_transform(data)
    mfcc = torch.mean(mfcc, dim=-1).numpy()  # Take mean across the time dimension
    features.append(mfcc)

    # Root Mean Square Energy (RMS)
    rms = torch.mean(T.MelSpectrogram(sample_rate)(data), dim=-1)  # Same as RMS feature extraction
    features.append(rms.numpy())

    # Mel Spectrogram
    mel = T.MelSpectrogram(sample_rate)(data)
    mel = torch.mean(mel, dim=-1).numpy()  # Take mean across the time dimension
    features.append(mel)

    # Convert list of features to a single numpy array
    result = np.hstack(features)

    return result


# Predict emotion from text
def find_emotion_using_text(sample_rate, audio_data, recognizer):
    mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
        temp_audio_path = temp_audio_file.name
        
        with wave.open(temp_audio_path, 'w') as wf:
            wf.setnchannels(1)
            wf.setsampwidth(2)
            wf.setframerate(sample_rate)
            wf.writeframes(audio_data.tobytes())
        
    with sr.AudioFile(temp_audio_path) as source:
        audio_record = recognizer.record(source)
        text = recognizer.recognize_google(audio_record)
        pre_text = preprocess_text(text)
        title_seq = tokenizer.texts_to_sequences([pre_text])
        padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
        inp1 = np.array(padded_title_seq)
        text_prediction = text_model.predict(inp1)
    
    os.remove(temp_audio_path)
    max_index = text_prediction.argmax()
    return mapping[max_index],text

# Predict emotion from audio
def predict_emotion(audio_data):
    sample_rate, data = audio_data
    data = data.flatten()
    
    if data.dtype != np.float32:
        data = data.astype(np.float32)
    data = data / np.max(np.abs(data))
    
    features = extract_features(data, sample_rate)
    features = np.expand_dims(features, axis=0)
    
    if features.ndim == 3:
        features = np.squeeze(features, axis=2)
    elif features.ndim != 2:
        raise ValueError("Features array has unexpected dimensions.")
    
    scaled_features = scaler.transform(features)
    scaled_features = np.expand_dims(scaled_features, axis=2)
    
    prediction = audio_model.predict(scaled_features)
    emotion_index = np.argmax(prediction)
    
    num_classes = len(encoder.categories_[0])
    emotion_array = np.zeros((1, num_classes))
    emotion_array[0, emotion_index] = 1
    
    emotion_label = encoder.inverse_transform(emotion_array)[0]
    return emotion_label

def preprocess_image(image):
    image = load_img(image, target_size=(48, 48), color_mode="grayscale")
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)
    image = image / 255.0
    return image

# Predict emotion from image
def predict_emotion_from_image(image):
    preprocessed_image = preprocess_image(image)
    prediction = image_model.predict(preprocessed_image)
    emotion_index = np.argmax(prediction)
    
    mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
    return mapping[emotion_index]

def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    frame_rate = cap.get(cv2.CAP_PROP_FPS)
    
    frame_count = 0
    predictions = []
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        # Process every nth frame (to speed up processing)
        if frame_count % int(frame_rate) == 0:
            # Convert frame to grayscale as required by your model
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            frame = cv2.resize(frame, (48, 48))  # Resize to match model input size
            frame = img_to_array(frame)
            frame = np.expand_dims(frame, axis=0) / 255.0
            
            # Predict emotion
            prediction = image_model.predict(frame)
            predictions.append(np.argmax(prediction))
        
        frame_count += 1
    
    cap.release()
    cv2.destroyAllWindows()
    
    # Find the most common prediction
    most_common_emotion = Counter(predictions).most_common(1)[0][0]
    mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
    return mapping[most_common_emotion]



def process_audio_from_video(video_path):
    text_emotion = "Error in text processing"  # Initialize text_emotion
    text=""
    try:
        # Load the video using an alternative library (e.g., ffmpeg or cv2)
        import ffmpeg

        audio_output = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
        ffmpeg.input(video_path).output(audio_output, format="wav").run(quiet=True)

        recognizer = sr.Recognizer()

        with sr.AudioFile(audio_output) as source:
            audio_record = recognizer.record(source)
            text = recognizer.recognize_google(audio_record)
            pre_text = preprocess_text(text)
            title_seq = tokenizer.texts_to_sequences([pre_text])
            padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
            inp1 = np.array(padded_title_seq)
            text_prediction = text_model.predict(inp1)

        os.remove(audio_output)

        max_index = text_prediction.argmax()
        text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]

    except Exception as e:
        print(f"Error processing text from audio: {e}")
        text_emotion = "Error in text processing"

    try:
        # Extract audio features for emotion recognition
        sample_rate, data = librosa.load(video_path, sr=None, mono=True)
        data = data.flatten()

        if data.dtype != np.float32:
            data = data.astype(np.float32)
        data = data / np.max(np.abs(data))

        features = extract_features(data, sample_rate)
        features = np.expand_dims(features, axis=0)
        scaled_features = scaler.transform(features)
        scaled_features = np.expand_dims(scaled_features, axis=2)

        prediction = audio_model.predict(scaled_features)
        emotion_index = np.argmax(prediction)

        num_classes = len(encoder.categories_[0])
        emotion_array = np.zeros((1, num_classes))
        emotion_array[0, emotion_index] = 1

        audio_emotion = encoder.inverse_transform(emotion_array)[0]

    except Exception as e:
        print(f"Error processing audio features: {e}")
        audio_emotion = "Error in audio processing"

    return text_emotion, audio_emotion,text



import torch
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM

# Hugging Face Inference Client (equivalent to the reference code's client)
client = InferenceClient("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")

# Tokenizer and model loading (still necessary if you want to process locally)
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")


def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]
    
    # Format history with user and bot messages
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    
    # Stream response from the model
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response


# Function to handle video processing and interaction
def transcribe_and_predict_video(video, user_input, chat_history=[]):
    # Process the video for emotions (use your own emotion detection functions)

    if chat_history is None:
        chat_history = []
    image_emotion = process_video(video)
    text_emotion, audio_emotion,text = process_audio_from_video(video)
    em = [image_emotion, text_emotion, audio_emotion]

    # Format the conversation history
    history_text = "".join([f"User ({msg[2]}): {msg[0]}\nBot: {msg[1]}\n" for msg in chat_history])

    # Construct the prompt with emotion context and history
    prompt = f"""
    You are a helpful AI assistant. Respond like a human while considering the user's emotion.

    User's Emotion: {em}
    video text context: {text}
    Conversation History:
    {history_text}

    User ({em}): {user_input}
    Bot:"""

    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt").to("cpu")

    # Generate response
    output = model.generate(**inputs, max_length=512, temperature=0.7, top_p=0.9, do_sample=True)
    response = tokenizer.decode(output[0], skip_special_tokens=True).split("Bot:")[-1].strip()

    # Store the current emotion for the user input (modify emotion detection as needed)
    emotion = detect_emotion(user_input)  # Assuming `detect_emotion` is a function that returns the user's emotion

    # Update the chat history with the current conversation and emotion
    chat_history.append((user_input, response, emotion))

    return response, chat_history


# Gradio interface setup
iface = gr.Interface(
    fn=transcribe_and_predict_video,
    inputs=[gr.Video(), gr.Textbox(), gr.State()],  # Accepting video input, user text, and chat history
    outputs=[gr.Textbox(), gr.State()],  # Output is the response and updated chat history
    title="Multimodal Emotion Recognition from Video",
    description="Upload a video to get text, audio, and image emotion predictions and interact with the chatbot."
)

# Launch the Gradio interface
if __name__ == "__main__":
    iface.launch()