Spaces:
Sleeping
Sleeping
File size: 12,803 Bytes
ab4fd59 aa35242 4a21329 4183bd3 4a21329 d125e9a 4a21329 d125e9a 4a21329 d125e9a 4a21329 3a2b7bc 4a21329 18a71f5 4a21329 dac5e9b e91c92a 4a21329 dac5e9b 4a21329 dac5e9b 4a21329 dac5e9b 4a21329 dac5e9b 4a21329 dac5e9b 4a21329 dac5e9b 4a21329 3a2b7bc 4a21329 dac5e9b 3a2b7bc 18d4be8 3a2b7bc 915d8ef 057ab31 915d8ef 18d4be8 3a2b7bc 915d8ef 3a2b7bc 915d8ef 18d4be8 915d8ef d125e9a aa35242 1d52ab6 3a2b7bc 915d8ef 3a2b7bc 1d52ab6 3a2b7bc 915d8ef 3a2b7bc 25e2b6c 3a2b7bc 915d8ef 3a2b7bc 4a21329 18a71f5 915d8ef 18d4be8 915d8ef 18d4be8 915d8ef 3a2b7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import gradio as gr
import numpy as np
import cv2
import librosa
import speech_recognition as sr
import tempfile
import wave
import optimum
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.models import load_model, model_from_json
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import pickle
import json
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from collections import Counter
from pydub import AudioSegment
import ffmpeg
nltk.download('punkt') # Tokenizer
nltk.download('wordnet') # WordNet lemmatizer
nltk.download('stopwords') # Stopwords
# Load the text model
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
model_json = json_file.read()
text_model = model_from_json(model_json)
text_model.load_weights("model_for_text_emotion_updated(1).keras")
# Load the encoder and scaler for audio
with open('encoder.pkl', 'rb') as file:
encoder = pickle.load(file)
with open('scaler.pkl', 'rb') as file:
scaler = pickle.load(file)
# Load the tokenizer for text
with open('tokenizer.json') as json_file:
tokenizer_json = json.load(json_file)
tokenizer = tokenizer_from_json(tokenizer_json)
# Load the audio model
audio_model = load_model('my_model.h5')
# Load the image model
image_model = load_model('model_emotion.h5')
# Initialize NLTK
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
# Preprocess text function
def preprocess_text(text):
tokens = nltk.word_tokenize(text.lower())
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
return ' '.join(lemmatized_tokens)
# Extract features from audio
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
def extract_features(data, sample_rate):
# List to collect all features
features = []
# Zero Crossing Rate (ZCR)
zcr = T.ZeroCrossingRate()(data)
features.append(torch.mean(zcr).numpy())
# Chroma Short-Time Fourier Transform (STFT)
stft = T.MelSpectrogram(sample_rate)(data)
chroma_stft = torch.mean(stft, dim=-1).numpy() # Take mean across the time dimension
features.append(chroma_stft)
# Mel Frequency Cepstral Coefficients (MFCC)
mfcc_transform = T.MFCC(sample_rate=sample_rate, melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23})
mfcc = mfcc_transform(data)
mfcc = torch.mean(mfcc, dim=-1).numpy() # Take mean across the time dimension
features.append(mfcc)
# Root Mean Square Energy (RMS)
rms = torch.mean(T.MelSpectrogram(sample_rate)(data), dim=-1) # Same as RMS feature extraction
features.append(rms.numpy())
# Mel Spectrogram
mel = T.MelSpectrogram(sample_rate)(data)
mel = torch.mean(mel, dim=-1).numpy() # Take mean across the time dimension
features.append(mel)
# Convert list of features to a single numpy array
result = np.hstack(features)
return result
# Predict emotion from text
def find_emotion_using_text(sample_rate, audio_data, recognizer):
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_path = temp_audio_file.name
with wave.open(temp_audio_path, 'w') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio_data.tobytes())
with sr.AudioFile(temp_audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(temp_audio_path)
max_index = text_prediction.argmax()
return mapping[max_index],text
# Predict emotion from audio
def predict_emotion(audio_data):
sample_rate, data = audio_data
data = data.flatten()
if data.dtype != np.float32:
data = data.astype(np.float32)
data = data / np.max(np.abs(data))
features = extract_features(data, sample_rate)
features = np.expand_dims(features, axis=0)
if features.ndim == 3:
features = np.squeeze(features, axis=2)
elif features.ndim != 2:
raise ValueError("Features array has unexpected dimensions.")
scaled_features = scaler.transform(features)
scaled_features = np.expand_dims(scaled_features, axis=2)
prediction = audio_model.predict(scaled_features)
emotion_index = np.argmax(prediction)
num_classes = len(encoder.categories_[0])
emotion_array = np.zeros((1, num_classes))
emotion_array[0, emotion_index] = 1
emotion_label = encoder.inverse_transform(emotion_array)[0]
return emotion_label
def preprocess_image(image):
image = load_img(image, target_size=(48, 48), color_mode="grayscale")
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = image / 255.0
return image
# Predict emotion from image
def predict_emotion_from_image(image):
preprocessed_image = preprocess_image(image)
prediction = image_model.predict(preprocessed_image)
emotion_index = np.argmax(prediction)
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[emotion_index]
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_count = 0
predictions = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every nth frame (to speed up processing)
if frame_count % int(frame_rate) == 0:
# Convert frame to grayscale as required by your model
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = cv2.resize(frame, (48, 48)) # Resize to match model input size
frame = img_to_array(frame)
frame = np.expand_dims(frame, axis=0) / 255.0
# Predict emotion
prediction = image_model.predict(frame)
predictions.append(np.argmax(prediction))
frame_count += 1
cap.release()
cv2.destroyAllWindows()
# Find the most common prediction
most_common_emotion = Counter(predictions).most_common(1)[0][0]
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[most_common_emotion]
def process_audio_from_video(video_path):
text_emotion = "Error in text processing" # Initialize text_emotion
text=""
try:
# Load the video using an alternative library (e.g., ffmpeg or cv2)
import ffmpeg
audio_output = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
ffmpeg.input(video_path).output(audio_output, format="wav").run(quiet=True)
recognizer = sr.Recognizer()
with sr.AudioFile(audio_output) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(audio_output)
max_index = text_prediction.argmax()
text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]
except Exception as e:
print(f"Error processing text from audio: {e}")
text_emotion = "Error in text processing"
try:
# Extract audio features for emotion recognition
sample_rate, data = librosa.load(video_path, sr=None, mono=True)
data = data.flatten()
if data.dtype != np.float32:
data = data.astype(np.float32)
data = data / np.max(np.abs(data))
features = extract_features(data, sample_rate)
features = np.expand_dims(features, axis=0)
scaled_features = scaler.transform(features)
scaled_features = np.expand_dims(scaled_features, axis=2)
prediction = audio_model.predict(scaled_features)
emotion_index = np.argmax(prediction)
num_classes = len(encoder.categories_[0])
emotion_array = np.zeros((1, num_classes))
emotion_array[0, emotion_index] = 1
audio_emotion = encoder.inverse_transform(emotion_array)[0]
except Exception as e:
print(f"Error processing audio features: {e}")
audio_emotion = "Error in audio processing"
return text_emotion, audio_emotion,text
import torch
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
# Hugging Face Inference Client (equivalent to the reference code's client)
client = InferenceClient("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
# Tokenizer and model loading (still necessary if you want to process locally)
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
# Format history with user and bot messages
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Stream response from the model
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Function to handle video processing and interaction
def transcribe_and_predict_video(video, user_input, chat_history=[]):
# Process the video for emotions (use your own emotion detection functions)
if chat_history is None:
chat_history = []
image_emotion = process_video(video)
text_emotion, audio_emotion,text = process_audio_from_video(video)
em = [image_emotion, text_emotion, audio_emotion]
# Format the conversation history
history_text = "".join([f"User ({msg[2]}): {msg[0]}\nBot: {msg[1]}\n" for msg in chat_history])
# Construct the prompt with emotion context and history
prompt = f"""
You are a helpful AI assistant. Respond like a human while considering the user's emotion.
User's Emotion: {em}
video text context: {text}
Conversation History:
{history_text}
User ({em}): {user_input}
Bot:"""
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
# Generate response
output = model.generate(**inputs, max_length=512, temperature=0.7, top_p=0.9, do_sample=True)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("Bot:")[-1].strip()
# Store the current emotion for the user input (modify emotion detection as needed)
emotion = detect_emotion(user_input) # Assuming `detect_emotion` is a function that returns the user's emotion
# Update the chat history with the current conversation and emotion
chat_history.append((user_input, response, emotion))
return response, chat_history
# Gradio interface setup
iface = gr.Interface(
fn=transcribe_and_predict_video,
inputs=[gr.Video(), gr.Textbox(), gr.State()], # Accepting video input, user text, and chat history
outputs=[gr.Textbox(), gr.State()], # Output is the response and updated chat history
title="Multimodal Emotion Recognition from Video",
description="Upload a video to get text, audio, and image emotion predictions and interact with the chatbot."
)
# Launch the Gradio interface
if __name__ == "__main__":
iface.launch()
|