Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Jun 8 09:32:26 2020 | |
@author: Muammer | |
""" | |
import os | |
script_dir = os.path.dirname(os.path.abspath(__file__)) | |
import numpy as np | |
from sklearn.model_selection import cross_validate | |
from sklearn.model_selection import cross_val_predict | |
from sklearn.metrics import matthews_corrcoef | |
from sklearn.metrics import classification_report | |
from sklearn.multiclass import OneVsRestClassifier | |
from sklearn import linear_model | |
from sklearn.metrics import f1_score | |
from sklearn.metrics import confusion_matrix | |
from sklearn.model_selection import train_test_split | |
import pandas as pd | |
from numpy import save | |
from sklearn.metrics import precision_recall_fscore_support | |
from tqdm import tqdm | |
from sklearn.metrics import accuracy_score | |
import math | |
representation_name = "" | |
representation_path = "" | |
dataset = "nc" | |
detailed_output = False | |
def convert_dataframe_to_multi_col(representation_dataframe): | |
entry = pd.DataFrame(representation_dataframe['Entry']) | |
vector = pd.DataFrame(list(representation_dataframe['Vector'])) | |
multi_col_representation_vector = pd.merge(left=entry,right=vector,left_index=True, right_index=True) | |
return multi_col_representation_vector | |
def class_based_scores(c_report, c_matrix): | |
c_report = pd.DataFrame(c_report).transpose() | |
#print(c_report) | |
c_report = c_report.drop(['precision', 'recall'], axis=1) | |
c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0) | |
cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis] | |
#print(c_report) | |
accuracy = cm.diagonal() | |
#print(accuracy) | |
#if len(accuracy) == 6: | |
# accuracy = np.delete(accuracy, 5) | |
accuracy = pd.Series(accuracy, index=c_report.index) | |
c_report['accuracy'] = accuracy | |
total = c_report['support'].sum() | |
#print(total) | |
num_classes = np.shape(c_matrix)[0] | |
mcc = np.zeros(shape=(num_classes,), dtype='float32') | |
weights = np.sum(c_matrix, axis=0)/np.sum(c_matrix) | |
total_tp = 0 | |
total_fp = 0 | |
total_fn = 0 | |
total_tn = 0 | |
for j in range(num_classes): | |
tp = np.sum(c_matrix[j, j]) | |
fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))]) | |
fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j]) | |
tn = int(total - tp - fp - fn) | |
total_tp = total_tp + tp | |
total_fp = total_fp + fp | |
total_fn = total_fn + fn | |
total_tn = total_tn + tn | |
#print(tp,fp,fn,tn) | |
mcc[j] = ((tp*tn)-(fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)) | |
#print(mcc) | |
#if len(mcc) == 6: | |
# mcc = np.delete(mcc, 5) | |
mcc = pd.Series(mcc, index=c_report.index) | |
c_report['mcc'] = mcc | |
#c_report.to_excel('../results/resultss_class_based_'+dataset+'.xlsx') | |
#print(c_report) | |
return c_report, total_tp, total_fp, total_fn, total_tn | |
def score_protein_rep(dataset): | |
#def score_protein_rep(pkl_data_path): | |
vecsize = 0 | |
#protein_list = pd.read_csv('../data/auxilary_input/entry_class.csv') | |
protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv')) | |
dataframe = pd.read_csv(representation_path) | |
#dataframe = convert_dataframe_to_multi_col(dataframe) | |
#dataframe = pd.read_pickle(pkl_data_path) | |
vecsize = dataframe.shape[1]-1 | |
x = np.empty([0, vecsize]) | |
xemp = np.zeros((1, vecsize), dtype=float) | |
y = [] | |
ne = [] | |
print("\n\nPreprocessing data for drug-target protein family prediction...\n ") | |
for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)): | |
pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']] | |
if len(pdrow) != 0: | |
a = pdrow.loc[ : , pdrow.columns != 'Entry'] | |
a = np.array(a) | |
a.shape = (1,vecsize) | |
x = np.append(x, a, axis=0) | |
y.append(row['Class']) | |
else: | |
ne.append(index) | |
x = np.append(x, xemp, axis=0,) | |
y.append(0.0) | |
#print(index) | |
x = x.astype(np.float64) | |
y = np.array(y) | |
y = y.astype(np.float64) | |
#print(len(y)) | |
scoring = ['precision_weighted', 'recall_weighted', 'f1_weighted', 'accuracy'] | |
target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other'] | |
labels = [1.0, 11.0, 12.0, 1005.0, 2000.0] | |
f1 = [] | |
accuracy = [] | |
mcc = [] | |
f1_perclass = [] | |
ac_perclass = [] | |
mcc_perclass = [] | |
sup_perclass = [] | |
report_list = [] | |
train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/'+dataset+'_trainindex.csv')) | |
test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv')) | |
train_index = train_index.dropna(axis=1) | |
test_index = test_index.dropna(axis=1) | |
#print(train_index) | |
#for index in ne: | |
conf = pd.DataFrame() | |
print('Producing protein family predictions...\n') | |
for i in tqdm(range(10)): | |
clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3,random_state=i,n_jobs=-1) | |
clf2 = OneVsRestClassifier(clf,n_jobs=-1) | |
#print(test_index) | |
train_indexx = train_index.iloc[i].astype(int) | |
test_indexx = test_index.iloc[i].astype(int) | |
#print(train_indexx) | |
#train_indexx.drop(labels=ne) | |
#print(type(train_indexx)) | |
for index in ne: | |
train_indexx = train_indexx[train_indexx!=index] | |
test_indexx = test_indexx[test_indexx!=index] | |
train_X, test_X = x[train_indexx], x[test_indexx] | |
train_y, test_y = y[train_indexx], y[test_indexx] | |
clf2.fit(train_X, train_y) | |
#print(train_X) | |
y_pred = clf2.predict(test_X) | |
#y_pred = cross_val_predict(clf2, x, y, cv=10, n_jobs=-1) | |
#mcc.append(matthews_corrcoef(test_y, y_pred, sample_weight = test_y)) | |
f1_ = f1_score(test_y, y_pred, average='weighted') | |
f1.append(f1_) | |
ac = accuracy_score(test_y, y_pred) | |
accuracy.append(ac) | |
c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True) | |
c_matrix = confusion_matrix(test_y, y_pred, labels=labels) | |
conf = conf.append(pd.DataFrame(c_matrix, columns=['Enzymes', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other']), ignore_index=True) | |
class_report, tp, fp, fn, tn = class_based_scores(c_report, c_matrix) | |
#print(total_tp) | |
mcc.append(((tp*tn)-(fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))) | |
f1_perclass.append(class_report['f1-score']) | |
ac_perclass.append(class_report['accuracy']) | |
mcc_perclass.append(class_report['mcc']) | |
sup_perclass.append(class_report['support']) | |
report_list.append(class_report) | |
if detailed_output: | |
conf.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_confusion_'+dataset+'_'+representation_name+'.csv'), index=None) | |
f1_perclass = pd.concat(f1_perclass, axis=1) | |
ac_perclass = pd.concat(ac_perclass, axis=1) | |
mcc_perclass = pd.concat(mcc_perclass, axis=1) | |
sup_perclass = pd.concat(sup_perclass, axis=1) | |
report_list = pd.concat(report_list, axis=1) | |
report_list.to_csv(os,path,join(script_dir, '../results/Drug_target_protein_family_classification_class_based_results_'+dataset+'_'+representation_name+'.csv')) | |
report = pd.DataFrame() | |
f1mean = np.mean(f1, axis=0) | |
#print(f1mean) | |
f1mean = f1mean.round(decimals=5) | |
f1std = np.std(f1).round(decimals=5) | |
acmean = np.mean(accuracy, axis=0).round(decimals=5) | |
acstd = np.std(accuracy).round(decimals=5) | |
mccmean = np.mean(mcc, axis=0).round(decimals=5) | |
mccstd = np.std(mcc).round(decimals=5) | |
labels = ['Average Score', 'Standard Deviation'] | |
report['Protein Family'] = labels | |
report['F1_score'] = [f1mean, f1std] | |
report['Accuracy'] = [acmean, acstd] | |
report['MCC'] = [mccmean, mccstd] | |
report.to_csv(os.path.join(script_dir, '../results/Drug_target_protein_family_classification_mean_results_'+dataset+'_'+representation_name+'.csv',index=False)) | |
#report.to_csv('scores_general.csv') | |
#print(report) | |
if detailed_output: | |
save('../results/Drug_target_protein_family_classification_f1_'+dataset+'_'+representation_name+'.npy', f1) | |
save('../results/Drug_target_protein_family_classification_accuracy_'+dataset+'_'+representation_name+'.npy', accuracy) | |
save('../results/Drug_target_protein_family_classification_mcc_'+dataset+'_'+representation_name+'.npy', mcc) | |
save('../results/Drug_target_protein_family_classification_class_based_f1_'+dataset+'_'+representation_name+'.npy', f1_perclass) | |
save('../results/Drug_target_protein_family_classification_class_based_accuracy_'+dataset+'_'+representation_name+'.npy', ac_perclass) | |
save('../results/Drug_target_protein_family_classification_class_based_mcc_'+dataset+'_'+representation_name+'.npy', mcc_perclass) | |
save('../results/Drug_target_protein_family_classification_class_based_support_'+dataset+'_'+representation_name+'.npy', sup_perclass) | |