File size: 8,689 Bytes
a336311
 
 
 
 
 
 
 
 
4c0c6d3
 
9b1fd5f
4c0c6d3
 
 
a336311
 
 
 
 
 
4c0c6d3
a336311
 
 
 
 
 
5e72909
a336311
 
 
 
4c0c6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b1fd5f
 
 
 
a336311
 
 
 
4c0c6d3
 
 
 
 
 
 
 
 
060b78c
a336311
9b1fd5f
 
 
 
 
 
 
 
 
38fc6d8
9b1fd5f
 
ae00dc0
9b1fd5f
d70f173
 
 
9b1fd5f
 
 
 
 
 
 
 
a336311
4c0c6d3
bcc9af3
4c0c6d3
 
 
 
 
 
 
 
 
 
a336311
4c0c6d3
bcc9af3
 
4c0c6d3
 
 
c1f44b6
 
4c0c6d3
9b1fd5f
 
 
4c0c6d3
 
 
 
 
 
 
9b1fd5f
 
4c0c6d3
 
 
 
 
291a445
4c0c6d3
 
 
 
 
 
 
bcc9af3
 
 
 
a336311
9b1fd5f
a336311
 
 
 
4c0c6d3
c1f44b6
 
4c0c6d3
 
a336311
4c0c6d3
a336311
 
 
 
 
4c0c6d3
a336311
4c0c6d3
a336311
060b78c
 
 
 
d8b8d75
060b78c
 
 
 
bcc9af3
060b78c
 
5e72909
060b78c
 
 
be13230
 
 
 
 
 
 
 
 
 
c1f44b6
fc093fb
be13230
 
 
 
 
 
 
fc093fb
be13230
fc093fb
be13230
a336311
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document

from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from uuid import uuid4
from prompt import *
import random
from itext2kg.models import KnowledgeGraph
from langchain.text_splitter import RecursiveCharacterTextSplitter

import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore

from pydantic import BaseModel, Field
from dotenv import load_dotenv
import os

from langchain_core.tools import tool
import pickle

import unicodedata

load_dotenv()
index_name = os.environ.get("INDEX_NAME")
# Global initialization
embedding_model = "text-embedding-3-small"

embedding = OpenAIEmbeddings(model=embedding_model)
# vector_store = PineconeVectorStore(index=index_name, embedding=embedding)

def advanced_graph_to_json(graph:KnowledgeGraph):
    nodes = []
    edges = []
    for node in graph.entities:
        node_id = node.name.replace(" ", "_")
        label = node.name
        type = node.label
        nodes.append({"id": node_id, "label": label, "type": type})
    for relationship in graph.relationships:
        source = relationship.startEntity
        source_id = source.name.replace(" ", "_")
        target = relationship.endEntity
        target_id = target.name.replace(" ", "_")
        label = relationship.name
        edges.append({"source": source_id, "label": label, "cible": target_id})
    return {"noeuds": nodes, "relations": edges}

with open("kg_ia_signature.pkl", "rb") as file:
    loaded_graph = pickle.load(file)
    graph = advanced_graph_to_json(loaded_graph)
    print("Graph loaded")

with open("chunks_ia_signature.pkl", "rb") as file:
    chunks = pickle.load(file)
    print("Chunks loaded")

with open("scenes.pkl", "rb") as file:
    scenes = pickle.load(file)
    print("Scenes loaded")

class sphinx_output(BaseModel):
    question: str = Field(description="The question to ask the user to test if they read the entire book")
    answers: list[str] = Field(description="The possible answers to the question to test if the user read the entire book")

class verify_response_model(BaseModel):
    response: str = Field(description="The response from the user to the question")
    answers: list[str] = Field(description="The possible answers to the question to test if the user read the entire book")
    initial_question: str = Field(description="The question asked to the user to test if they read the entire book")

class verification_score(BaseModel):
    score: float = Field(description="The score of the user's response from 0 to 10 to the question")


llm = ChatOpenAI(model="gpt-4o", max_tokens=700, temperature=0.5)

def split_texts(text : str) -> list[str]:
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
        is_separator_regex=False,
    )
    return splitter.split_text(text)


#########################################################################
### PAR ICI , CHOISIR UNE SCENE SPECIFIQUE DANS L'ARGUMENT DE LA FONCTION
def get_random_chunk(scene_specific = [5]) : # scene_specific = None signifie qu'on considère tout le récit / 1,3,5 pour avoir la 1 et la 3 et la 5
    if scene_specific:
        scene_specific_content = [scenes[i-1] for i in scene_specific]
        scene_specific_content = " ".join(scene_specific_content)
        chunks_scene = split_texts(scene_specific_content)
        print(f"Scene {scene_specific} has {len(chunks_scene)} chunks")
        print([chunk[0:50] for chunk in chunks_scene])
        print('---')
        chunk_chosen = chunks_scene[random.randint(0, len(chunks_scene) - 1)]
        print(f"Chosen chunk: {chunk_chosen}")
        return chunk_chosen, scene_specific
    
    return chunks[random.randint(0, len(chunks) - 1)],scene_specific


def get_vectorstore(chunks) -> FAISS:
    index = faiss.IndexFlatL2(len(embedding.embed_query("hello world")))
    vector_store = FAISS(
        embedding_function=embedding,
        index=index,
        docstore=InMemoryDocstore(),
        index_to_docstore_id={},
    )
    documents = [Document(page_content=chunk) for chunk in chunks]
    uuids = [str(uuid4()) for _ in range(len(documents))]
    vector_store.add_documents(documents=documents, ids=uuids)
    return vector_store

vectore_store = get_vectorstore(chunks)
scenes_vectore_store = get_vectorstore(scenes)


def generate_sphinx_response() -> sphinx_output:
    writer = "Gaspard Boréal"
    book_name =  "La confession muette"
    summary = summary_text
    excerpt , scene_number = get_random_chunk()
    if scene_number:
        summary = "scene " + str(scene_number)
    prompt = PromptTemplate.from_template(template_sphinx)
    structured_llm = llm.with_structured_output(sphinx_output)
    # Create an LLM chain with the prompt and the LLM
    llm_chain = prompt | structured_llm

    return llm_chain.invoke({"writer":writer,"book_name":book_name,"summary":summary,"excerpt":excerpt})

#############################################################
### PAR ICI , CHOISIR LE DEGRE DE SEVERITE DE LA VERIFICATION
def verify_response(response:str,answers:list[str],question:str) -> bool:
    prompt = PromptTemplate.from_template(template_verify)
    structured_llm = llm.with_structured_output(verification_score)
    llm_chain = prompt | structured_llm
    score = llm_chain.invoke({"response":response,"answers":answers,"initial_question":question})
    if score.score >= 5:
        return True
    

def retrieve_context_from_vectorestore(query:str) -> str:
    retriever = vectore_store.as_retriever(search_type="mmr", search_kwargs={"k": 3})
    return retriever.invoke(query)

def retrieve_context_from_scenes(query:str) -> str:
    retriever = scenes_vectore_store.as_retriever(search_kwargs={"k": 1})
    return retriever.invoke(query)

        
def generate_stream(query:str,messages = [], model = "gpt-4o-mini", max_tokens = 300, temperature = 1,index_name="",stream=True,vector_store=None):
    try:
        print("init chat")
        print("init template")
        prompt = PromptTemplate.from_template(template)

        writer = "Gaspard Boréal"
        name_book = "La confession muette"
        name_icon = "Magritte"
        kg = loaded_graph
        print("retreiving context")
        context = retrieve_context_from_vectorestore(query)
        print(f"Context: {context}")
        llm_chain = prompt | llm | StrOutputParser()

        print("streaming")
        if stream:
            return llm_chain.stream({"name_book":name_book,"writer":writer,"name_icon":name_icon,"kg":graph,"context":context,"query":query})
        else:
            return llm_chain.invoke({"name_book":name_book,"writer":writer,"name_icon":name_icon,"kg":graph,"context":context,"query":query})

    except Exception as e:
        print(e)
        return False
    
def generate_whatif_stream(question:str,response:str, stream:bool = False) -> str:
    try:
        prompt = PromptTemplate.from_template(template_whatif)
        llm_chain = prompt | llm | StrOutputParser()
        print("Enter whatif")
        context = retrieve_context_from_scenes(f"question: {question} . reponse : {response}")
        print(f"Context: {context}")

        if stream:
            return llm_chain.stream({"question":question,"response":response,"context":context})
        else:
            return llm_chain.invoke({"question":question,"response":response,"context":context})
    except Exception as e:
        print(e)
        return False
    
def generate_stream_whatif_chat(query:str,messages = [], model = "gpt-4o-mini", max_tokens = 500, temperature = 1,index_name="",stream=True,vector_store=None):
    try:
        print("init chat")
        print("init template")
        prompt = PromptTemplate.from_template(template_whatif_response)

        writer = "Gaspard Boréal"
        name_book = "La confession muette"
        print("retreiving context")
        context = retrieve_context_from_vectorestore(query)
        print(f"Context: {context}")
        llm_chain = prompt | llm | StrOutputParser()

        print("streaming")
        if stream:
            return llm_chain.stream({"name_book":name_book,"writer":writer,"messages":messages,"context":context,"query":query,"summary":summary_text})
        else:
            return llm_chain.invoke({"name_book":name_book,"writer":writer,"messages":messages,"context":context,"query":query,"summary":summary_text})
        
    except Exception as e:
        print(e)
        return False