Spaces:
Running
Running
File size: 61,943 Bytes
c055e89 8e14d20 c055e89 7927ab2 cd5bd26 a886688 1ace391 ebd29b9 74744eb 5fed627 ee7a278 0fc7cd1 ee7a278 5fed627 60b0d11 c58df40 f0afce4 c58df40 f0afce4 74744eb 0f5cb56 f1fda32 0f5cb56 bcb8cb1 f0c72ad bcb8cb1 0f5cb56 f0c72ad cc70457 bcb8cb1 cc70457 ca8a2ca 6636280 234e026 2d0cccd 234e026 89b92be a7cda23 234e026 89b92be 6636280 a886688 89b92be 9464b47 89b92be bd001a3 89b92be 234e026 89b92be 234e026 89b92be 234e026 89b92be 234e026 6636280 234e026 bd001a3 234e026 bd001a3 234e026 bd001a3 234e026 bd001a3 234e026 bd001a3 234e026 6636280 8a87cd6 bd001a3 234e026 6636280 234e026 bd001a3 234e026 bd001a3 234e026 bd001a3 234e026 bba8af9 234e026 b2154bf e4825c2 108f645 e4825c2 89b92be 9464b47 bd001a3 9464b47 108f645 9464b47 181f667 9464b47 bd001a3 181f667 bd001a3 9464b47 a886688 1e7417b a886688 b2154bf dcf88fb b2154bf 6636280 64e5e5a ca8a2ca c055e89 a886688 b2154bf ede53f4 a886688 667a0d3 ede53f4 b2154bf a455f97 ede53f4 89b92be ede53f4 234e026 89b92be 234e026 ede53f4 8a87cd6 89b92be ede53f4 b2154bf bba8af9 b2154bf bba8af9 b2154bf a886688 b2154bf c9dc57d bba8af9 c9dc57d b2154bf 234e026 0e92849 bba8af9 234e026 cc70457 e4825c2 108f645 e4825c2 e4da5b1 e4825c2 bd001a3 1e7417b a886688 c9dc57d e4da5b1 1e7417b a886688 ede53f4 bba8af9 ee7a278 494526e ee7a278 bba8af9 53a98fd 7b5c32e 74744eb cd5bd26 0e3778b c50a443 ede53f4 0e3778b 9dd70a7 69be213 1d58cd7 5cd0e1e 5e35153 5cd0e1e 6433dba 1d58cd7 cd5bd26 abcae38 cd5bd26 1ec31d9 f95f048 1ec31d9 67d05e3 2ca5c30 878ff6b f95f048 878ff6b f95f048 2ca5c30 878ff6b abcae38 0e3778b 1ec31d9 cd5bd26 cc85f78 6636280 cd5bd26 69be213 cd5bd26 ca8a2ca 6636280 bba8af9 cd5bd26 e5109be 18d89f0 e4da5b1 18d89f0 7524c65 20dc216 375d701 20dc216 cde05f1 18d89f0 f5a93f9 cc70457 69b2485 c991ae0 cc70457 18d89f0 cc70457 18d89f0 c055e89 cd5bd26 0217d78 7524c65 c055e89 264149b c055e89 3a0e8ae c055e89 7524c65 29a5f2c f7860cf 29a5f2c 76df6f6 7524c65 76df6f6 83020c7 29a5f2c 83020c7 29a5f2c 83020c7 ccf5c81 83020c7 ccf5c81 83020c7 c055e89 0636bf7 7524c65 0636bf7 cea913e c62c303 7524c65 2a9845b 7524c65 c055e89 20dc216 a2f2037 20dc216 2987626 aea0389 108f645 20dc216 c055e89 20dc216 cd5bd26 69be213 cd5bd26 1cb88a1 cd5bd26 ca8a2ca cd5bd26 1cb88a1 cd5bd26 18d89f0 cd5bd26 18d89f0 20dc216 18d89f0 20dc216 29a5f2c 20dc216 1cb88a1 20dc216 e080e91 18d89f0 29a5f2c 48707ff 29a5f2c e080e91 ee22100 9952550 6636280 e080e91 29a5f2c 2bb5d82 cd5bd26 2bb5d82 20dc216 2bb5d82 2c89463 ecca97f 9068c64 71abf2f 9952550 ecca97f 2c89463 0c804b7 2c89463 40f7a3f 56450a7 2c89463 03d6969 2c89463 bece061 181f667 2c89463 193c0b7 2c89463 56450a7 03d6969 2c89463 abf1e6b 181f667 abf1e6b aea65b3 bd001a3 aea65b3 bd001a3 aea65b3 181f667 bd001a3 181f667 abf1e6b 409225a aea65b3 bece061 181f667 bece061 abf1e6b 181f667 433517c af37f5e 3425a41 20dc216 63f3958 cd5bd26 20dc216 878ff6b 2ca5c30 878ff6b 2ca5c30 3425a41 20dc216 63f3958 cd5bd26 20dc216 cd5bd26 878ff6b 0903ad6 878ff6b af37f5e 99f01ee 8ae6da1 878ff6b 8ae6da1 878ff6b 8ae6da1 878ff6b 433517c af37f5e 99f01ee af37f5e 10801ae 433517c af37f5e 99f01ee af37f5e 10801ae 2b0c2d0 18d89f0 5404187 c4e7fbc ee22100 abf1e6b 2b0c2d0 ee22100 6aa0fa6 2b0c2d0 abf1e6b 009ac4f abf1e6b 009ac4f abf1e6b 1925e72 2b0c2d0 b0986f3 20dc216 cd5bd26 bece061 aea0389 b33525a 6691dd6 b33525a 637cb4e b0986f3 0636bf7 1ace391 4478ce8 1ace391 4478ce8 ebd29b9 0408757 dc46588 09cd5ce 462fbb0 619c449 c3e4d11 74744eb 637cb4e 29f8edc dc46588 b72e390 375d701 8e14d20 09d8f48 8f8bb42 8e14d20 ca8a2ca 878ff6b abf1e6b bba8af9 878ff6b bba8af9 abf1e6b 878ff6b abf1e6b bba8af9 878ff6b abf1e6b bba8af9 878ff6b 2ca5c30 462fbb0 8a40d1b 502ca44 8a40d1b 502ca44 12e6fc5 8a40d1b bba8af9 bd001a3 502ca44 bba8af9 502ca44 bba8af9 502ca44 1e7417b 6636280 502ca44 6636280 502ca44 a455f97 4cca697 a455f97 bba8af9 f5a93f9 bba8af9 a455f97 8a40d1b 12e6fc5 a455f97 bba8af9 5fed627 0408757 bba8af9 0408757 60b0d11 bba8af9 60b0d11 bba8af9 5fed627 1e7417b 5fed627 c908a11 5fed627 6636280 ede53f4 a455f97 ede53f4 ac01906 73c86b6 294e0bf 462fbb0 234e026 c823dc3 d36b523 0408d22 0eaad07 0408d22 53e5e28 234e026 ee7a278 0fc7cd1 ee7a278 82bcf4e ee7a278 0fc7cd1 ee7a278 294e0bf 7927ab2 64e5e5a 760f182 7927ab2 bbfb485 7927ab2 09cd5ce 760f182 bbfb485 760f182 bbfb485 760f182 1e7417b 09d8f48 760f182 09d8f48 760f182 09d8f48 f5a93f9 ee7a278 494526e f5a93f9 ee7a278 494526e f5a93f9 0fc7cd1 f5a93f9 0fc7cd1 f5a93f9 ee7a278 0fc7cd1 ee7a278 0fc7cd1 ee7a278 f5a93f9 ee7a278 69b2485 ee7a278 64e5e5a ee7a278 0fc7cd1 ee7a278 0fc7cd1 f5a93f9 e4da5b1 494526e 0fc7cd1 3617d86 0fc7cd1 f1fda32 ee7a278 1f4eba7 ee7a278 69b2485 ee7a278 bbfb485 ee7a278 0fc7cd1 bbfb485 ee7a278 bbfb485 ee7a278 bbfb485 bc21678 0fc7cd1 22d84e7 0fc7cd1 69b2485 f5a93f9 1eae8c6 5de1947 1eae8c6 20dc216 f5a93f9 09d8f48 760f182 5147f0b 20dc216 7366b46 f1fda32 0fc7cd1 1eae8c6 c09bde4 69b2485 1eae8c6 7366b46 1ba9e48 a629389 64e5e5a 09d8f48 64e5e5a 5de1947 abf1e6b a629389 64e5e5a 09d8f48 64e5e5a 5de1947 abf1e6b 5de1947 c4e7fbc b0de8ae ee7a278 b0de8ae 0fc7cd1 69b2485 1eae8c6 f5a93f9 ee7a278 0fc7cd1 f5a93f9 9594ec2 760f182 09d8f48 3617d86 09d8f48 64e5e5a 09d8f48 69b2485 1eae8c6 69b2485 760f182 c4e7fbc 6b71cc7 0fc7cd1 3617d86 0fc7cd1 3617d86 0636bf7 20dc216 cc70457 20dc216 c055e89 9983762 cc70457 3617d86 20dc216 9983762 cde05f1 2519d7f d0dc5de 353a56a 2519d7f cd5bd26 f5a93f9 c177a79 f5a93f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 |
import gradio as gr
import pandas as pd
from langdetect import detect
from datasets import load_dataset
import threading, time, uuid, sqlite3, shutil, os, random, asyncio, threading
from pathlib import Path
from huggingface_hub import CommitScheduler, delete_file, hf_hub_download
from gradio_client import Client, handle_file
import pyloudnorm as pyln
import soundfile as sf
import librosa
from detoxify import Detoxify
import os
import tempfile
from pydub import AudioSegment
import itertools
from typing import List, Tuple, Set, Dict
from hashlib import md5, sha1
class User:
def __init__(self, user_id: str):
self.user_id = user_id
self.voted_pairs: Set[Tuple[str, str]] = set()
class Sample:
def __init__(self, filename: str, transcript: str, modelName: str):
self.filename = filename
self.transcript = transcript
self.modelName = modelName
def match_target_amplitude(sound, target_dBFS):
change_in_dBFS = target_dBFS - sound.dBFS
return sound.apply_gain(change_in_dBFS)
# from gradio_space_ci import enable_space_ci
# enable_space_ci()
toxicity = Detoxify('original')
sents = []
with open('harvard_sentences.txt') as f:
sents += f.read().strip().splitlines()
with open('llama3_command-r_sentences_1st_person.txt') as f:
sents += f.read().strip().splitlines()
# With other punctuation marks
# Exclamations - # conversational characters/animation entertainment/tv
with open('llama3_command-r_sentences_excla.txt') as f:
sents += f.read().strip().splitlines()
# Questions - # conversational characters/animation entertainment/tv
with open('llama3_command-r_questions.txt') as f:
sents += f.read().strip().splitlines()
# Credit: llama3_command-r sentences generated by user KingNish
####################################
# Constants
####################################
AVAILABLE_MODELS = {
# 'XTTSv2': 'xtts',
# 'WhisperSpeech': 'whisperspeech',
# 'ElevenLabs': 'eleven',
# 'OpenVoice': 'openvoice',
# 'OpenVoice V2': 'openvoicev2',
# 'Play.HT 2.0': 'playht',
# 'MetaVoice': 'metavoice',
# 'MeloTTS': 'melo',
# 'StyleTTS 2': 'styletts2',
# 'GPT-SoVITS': 'sovits',
# 'Vokan TTS': 'vokan',
# 'VoiceCraft 2.0': 'voicecraft',
# 'Parler TTS': 'parler'
# HF Gradio Spaces: # <works with gradio version #>
# gravio version that works with most spaces: 4.29
'coqui/xtts': 'coqui/xtts', # 4.29 4.32
'collabora/WhisperSpeech': 'collabora/WhisperSpeech', # 4.32 4.36.1
# 'myshell-ai/OpenVoice': 'myshell-ai/OpenVoice', # same devs as MeloTTS, which scores higher # 4.29
# 'myshell-ai/OpenVoiceV2': 'myshell-ai/OpenVoiceV2', # same devs as MeloTTS, which scores higher # 4.29
'mrfakename/MetaVoice-1B-v0.1': 'mrfakename/MetaVoice-1B-v0.1', # 4.29 4.32
'Pendrokar/xVASynth-TTS': 'Pendrokar/xVASynth-TTS', # 4.29 4.32 4.42.0
# 'coqui/CoquiTTS': 'coqui/CoquiTTS',
'mrfakename/MeloTTS': 'mrfakename/MeloTTS', # 4.29 4.32
'fishaudio/fish-speech-1': 'fishaudio/fish-speech-1', # 4.29 4.32 4.36.1
# E2 & F5 TTS
# F5 model
'mrfakename/E2-F5-TTS': 'mrfakename/E2-F5-TTS', # 5.0
# # Parler
'parler-tts/parler_tts': 'parler-tts/parler_tts', # 4.29 4.32 4.36.1 4.42.0
'parler-tts/parler-tts-expresso': 'parler-tts/parler-tts-expresso', # 4.29 4.32 4.36.1 4.42.0
# # Microsoft Edge TTS
'innoai/Edge-TTS-Text-to-Speech': 'innoai/Edge-TTS-Text-to-Speech', # 4.29
# HF TTS w issues
# 'LeeSangHoon/HierSpeech_TTS': 'LeeSangHoon/HierSpeech_TTS', # irresponsive to exclamation marks # 4.29
# 'PolyAI/pheme': '/predict#0', # sleepy HF Space
# 'amphion/Text-to-Speech': '/predict#0', # disabled also on original HF space due to poor ratings
# 'suno/bark': '3#0', # Hallucinates
# 'shivammehta25/Matcha-TTS': '5#0', # seems to require multiple requests for setup
# 'styletts2/styletts2': '0#0', # API disabled, awaiting approval of PR #15
# 'Manmay/tortoise-tts': '/predict#0', # Cannot retrieve streamed file; 403
# 'pytorch/Tacotron2': '0#0', # old gradio
# 'parler-tts/parler_tts_mini': 'parler-tts/parler_tts_mini', # Mini is the default model of parler_tts
}
HF_SPACES = {
# XTTS v2
'coqui/xtts': {
'name': 'XTTS v2',
'function': '1',
'text_param_index': 0,
'return_audio_index': 1,
},
# WhisperSpeech
'collabora/WhisperSpeech': {
'name': 'WhisperSpeech',
'function': '/whisper_speech_demo',
'text_param_index': 0,
'return_audio_index': 0,
},
# OpenVoice (MyShell.ai)
'myshell-ai/OpenVoice': {
'name':'OpenVoice',
'function': '1',
'text_param_index': 0,
'return_audio_index': 1,
},
# OpenVoice v2 (MyShell.ai)
'myshell-ai/OpenVoiceV2': {
'name':'OpenVoice v2',
'function': '1',
'text_param_index': 0,
'return_audio_index': 1,
},
# MetaVoice
'mrfakename/MetaVoice-1B-v0.1': {
'name':'MetaVoice',
'function': '/tts',
'text_param_index': 0,
'return_audio_index': 0,
},
# xVASynth (CPU)
'Pendrokar/xVASynth-TTS': {
'name': 'xVASynth v3',
'function': '/predict',
'text_param_index': 0,
'return_audio_index': 0,
},
# CoquiTTS (CPU)
'coqui/CoquiTTS': {
'name': 'CoquiTTS',
'function': '0',
'text_param_index': 0,
'return_audio_index': 0,
},
# HierSpeech_TTS
'LeeSangHoon/HierSpeech_TTS': {
'name': 'HierSpeech++',
'function': '/predict',
'text_param_index': 0,
'return_audio_index': 0,
},
# MeloTTS (MyShell.ai)
'mrfakename/MeloTTS': {
'name': 'MeloTTS',
'function': '/synthesize',
'text_param_index': 0,
'return_audio_index': 0,
},
# Parler
'parler-tts/parler_tts': {
'name': 'Parler Mini',
'function': '/gen_tts',
'text_param_index': 0,
'return_audio_index': 0,
},
# Parler Mini
'parler-tts/parler_tts_mini': {
'name': 'Parler Mini',
'function': '/gen_tts',
'text_param_index': 0,
'return_audio_index': 0,
},
# Parler Mini which using Expresso dataset
'parler-tts/parler-tts-expresso': {
'name': 'Parler Mini Expresso',
'function': '/gen_tts',
'text_param_index': 0,
'return_audio_index': 0,
},
# Microsoft Edge TTS
'innoai/Edge-TTS-Text-to-Speech': {
'name': 'Edge TTS',
'function': '/predict',
'text_param_index': 0,
'return_audio_index': 0,
'is_proprietary': True,
},
# Fish Speech
'fishaudio/fish-speech-1': {
'name': 'Fish Speech',
'function': '/inference_wrapper',
'text_param_index': 0,
'return_audio_index': 1,
},
# E2/F5 TTS
'mrfakename/E2-F5-TTS': {
'name': 'F5 of E2 TTS',
'function': '/infer',
'text_param_index': 2,
'return_audio_index': 0,
},
# TTS w issues
# 'PolyAI/pheme': '/predict#0', #sleepy HF Space
# 'amphion/Text-to-Speech': '/predict#0', #takes a whole minute to synthesize
# 'suno/bark': '3#0', # Hallucinates
# 'shivammehta25/Matcha-TTS': '5#0', #seems to require multiple requests for setup
# 'styletts2/styletts2': '0#0', #API disabled
# 'Manmay/tortoise-tts': '/predict#0', #Cannot skip text-from-file parameter
# 'pytorch/Tacotron2': '0#0', #old gradio
# 'fishaudio/fish-speech-1': '/inference_wrapper#0', heavy hallucinations
}
# for zero-shot TTS - voice sample used by XTTS (11 seconds)
DEFAULT_VOICE_SAMPLE_STR = 'https://cdn-uploads.huggingface.co/production/uploads/63d52e0c4e5642795617f668/V6-rMmI-P59DA4leWDIcK.wav'
DEFAULT_VOICE_SAMPLE = handle_file(DEFAULT_VOICE_SAMPLE_STR)
DEFAULT_VOICE_TRANSCRIPT = "The Hispaniola was rolling scuppers under in the ocean swell. The booms were tearing at the blocks, the rudder was banging to and fro, and the whole ship creaking, groaning, and jumping like a manufactory."
OVERRIDE_INPUTS = {
'coqui/xtts': {
1: 'en',
2: DEFAULT_VOICE_SAMPLE_STR, # voice sample
3: None, # mic voice sample
4: False, #use_mic
5: False, #cleanup_reference
6: False, #auto_detect
},
'collabora/WhisperSpeech': {
1: DEFAULT_VOICE_SAMPLE, # voice sample
2: DEFAULT_VOICE_SAMPLE, # voice sample URL
3: 14.0, #Tempo - Gradio Slider issue: takes min. rather than value
},
'myshell-ai/OpenVoice': {
1: 'default', # style
2: 'https://huggingface.co/spaces/myshell-ai/OpenVoiceV2/resolve/main/examples/speaker0.mp3', # voice sample
},
'myshell-ai/OpenVoiceV2': {
1: 'en_us', # style
2: 'https://huggingface.co/spaces/myshell-ai/OpenVoiceV2/resolve/main/examples/speaker0.mp3', # voice sample
},
'PolyAI/pheme': {
1: 'YOU1000000044_S0000798', # voice
2: 210,
3: 0.7, #Tempo - Gradio Slider issue: takes min. rather than value
},
'Pendrokar/xVASynth-TTS': {
1: 'x_ex04', #fine-tuned voice model name
3: 1.0, #pacing/duration - Gradio Slider issue: takes min. rather than value
},
'suno/bark': {
1: 'Speaker 3 (en)', # voice
},
'amphion/Text-to-Speech': {
1: 'LikeManyWaters', # voice
},
'LeeSangHoon/HierSpeech_TTS': {
1: handle_file('https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS/resolve/main/example/female.wav'), # voice sample
2: 0.333,
3: 0.333,
4: 1,
5: 1,
6: 0,
7: 1111,
},
'Manmay/tortoise-tts': {
1: None, # text-from-file
2: 'angie', # voice
3: 'disabled', # second voice for a dialogue
4: 'No', # split by newline
},
'mrfakename/MeloTTS': {
1: 'EN-Default', # speaker; DEFAULT_VOICE_SAMPLE=EN-Default
2: 1, # speed
3: 'EN', # language
},
'mrfakename/MetaVoice-1B-v0.1': {
1: 5, # float (numeric value between 0.0 and 10.0) in 'Speech Stability - improves text following for a challenging speaker' Slider component
2: 5, # float (numeric value between 1.0 and 5.0) in 'Speaker similarity - How closely to match speaker identity and speech style.' Slider component
3: "Preset voices", # Literal['Preset voices', 'Upload target voice'] in 'Choose voice' Radio component
4: "Bria", # Literal['Bria', 'Alex', 'Jacob'] in 'Preset voices' Dropdown component
5: None, # filepath in 'Upload a clean sample to clone. Sample should contain 1 speaker, be between 30-90 seconds and not contain background noise.' Audio component
},
'parler-tts/parler_tts': {
1: 'Laura; Laura\'s female voice; very clear audio', # description/prompt
},
'parler-tts/parler-tts-expresso': {
1: 'Elisabeth; Elisabeth\'s female voice; very clear audio', # description/prompt
},
'innoai/Edge-TTS-Text-to-Speech': {
1: 'en-US-EmmaMultilingualNeural - en-US (Female)', # voice
2: 0, # pace rate
3: 0, # pitch
},
'fishaudio/fish-speech-1': {
1: True, # enable_reference_audio
2: handle_file('https://huggingface.co/spaces/fishaudio/fish-speech-1/resolve/main/examples/English.wav'), # reference_audio
3: 'In the ancient land of Eldoria, where the skies were painted with shades of mystic hues and the forests whispered secrets of old, there existed a dragon named Zephyros. Unlike the fearsome tales of dragons that plagued human hearts with terror, Zephyros was a creature of wonder and wisdom, revered by all who knew of his existence.', # reference_text
4: 0, # max_new_tokens
5: 200, # chunk_length
6: 0.7, # top_p
7: 1.2, # repetition_penalty
8: 0.7, # temperature
9: 1, # batch_infer_num
10: False, # if_load_asr_model
},
'mrfakename/E2-F5-TTS': {
0: DEFAULT_VOICE_SAMPLE, # voice sample
1: DEFAULT_VOICE_TRANSCRIPT, # transcript of sample (< 15 seconds required)
3: "F5-TTS", # model
4: False, # cleanup silence
},
}
hf_clients = {}
# cache audio samples for quick voting
cached_samples: List[Sample] = []
voting_users = {
# userid as the key and USER() as the value
}
def generate_matching_pairs(samples: List[Sample]) -> List[Tuple[Sample, Sample]]:
transcript_groups: Dict[str, List[Sample]] = {}
samples = random.sample(samples, k=len(samples))
for sample in samples:
if sample.transcript not in transcript_groups:
transcript_groups[sample.transcript] = []
transcript_groups[sample.transcript].append(sample)
matching_pairs: List[Tuple[Sample, Sample]] = []
for group in transcript_groups.values():
matching_pairs.extend(list(itertools.combinations(group, 2)))
return matching_pairs
# List[Tuple[Sample, Sample]]
all_pairs = []
SPACE_ID = os.getenv('SPACE_ID')
MAX_SAMPLE_TXT_LENGTH = 300
MIN_SAMPLE_TXT_LENGTH = 10
DB_DATASET_ID = os.getenv('DATASET_ID')
DB_NAME = "database.db"
SPACE_ID = 'TTS-AGI/TTS-Arena'
# If /data available => means local storage is enabled => let's use it!
DB_PATH = f"/data/{DB_NAME}" if os.path.isdir("/data") else DB_NAME
print(f"Using {DB_PATH}")
# AUDIO_DATASET_ID = "ttseval/tts-arena-new"
CITATION_TEXT = """@misc{tts-arena,
title = {Text to Speech Arena},
author = {mrfakename and Srivastav, Vaibhav and Fourrier, ClΓ©mentine and Pouget, Lucain and Lacombe, Yoach and main and Gandhi, Sanchit},
year = 2024,
publisher = {Hugging Face},
howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}"
}"""
####################################
# Functions
####################################
def create_db_if_missing():
conn = get_db()
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS model (
name TEXT UNIQUE,
upvote INTEGER,
downvote INTEGER
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS vote (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
model TEXT,
vote INTEGER,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS votelog (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
chosen TEXT,
rejected TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS spokentext (
id INTEGER PRIMARY KEY AUTOINCREMENT,
votelog_id INTEGER UNIQUE,
spokentext TEXT,
lang TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
''')
# foreign keys
cursor.execute('''
CREATE UNIQUE INDEX IF NOT EXISTS st_to_vl ON spokentext(votelog_id);
''')
def get_db():
return sqlite3.connect(DB_PATH)
####################################
# Space initialization
####################################
# Download existing DB
if not os.path.isfile(DB_PATH):
print("Downloading DB...")
try:
cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME)
shutil.copyfile(cache_path, DB_PATH)
print("Downloaded DB")
except Exception as e:
print("Error while downloading DB:", e)
# Create DB table (if doesn't exist)
create_db_if_missing()
hf_token = os.getenv('HF_TOKEN')
# Sync local DB with remote repo every 5 minute (only if a change is detected)
scheduler = CommitScheduler(
repo_id=DB_DATASET_ID,
repo_type="dataset",
folder_path=Path(DB_PATH).parent,
every=5,
allow_patterns=DB_NAME,
)
# Load audio dataset
# audio_dataset = load_dataset(AUDIO_DATASET_ID)
####################################
# Router API
####################################
# router = Client("TTS-AGI/tts-router", hf_token=hf_token)
router = {}
####################################
# Gradio app
####################################
MUST_BE_LOGGEDIN = "Please login with Hugging Face to participate in the TTS Arena."
DESCR = """
# TTS Spaces Arena: Benchmarking Gradio hosted TTS Models in the Wild
Vote to help the community find the best available text-to-speech model!
""".strip()
# INSTR = """
# ## Instructions
# * Listen to two anonymous models
# * Vote on which synthesized audio sounds more natural to you
# * If there's a tie, click Skip
# **When you're ready to begin, login and begin voting!** The model names will be revealed once you vote.
# """.strip()
INSTR = """
## π³οΈ Vote
* Press β‘ to get cached sample pairs you've yet to vote on. (Fast π)
* Or press π² to randomly use a sentence from the list. (Slow π’)
* Or input text (πΊπΈ English only) to synthesize audio. (Slowest π due to _Toxicity_ test)
* Listen to the two audio clips, one after the other.
* _Vote on which audio sounds more natural to you._
* Model names are revealed after the vote is cast.
β Note: It **may take up to 30 seconds** to ***synthesize*** audio.
""".strip()
request = ''
if SPACE_ID:
request = f"""
### Request a model
Please [create a Discussion](https://huggingface.co/spaces/{SPACE_ID}/discussions/new) to request a model.
"""
ABOUT = f"""
## π About
The TTS Arena evaluates leading speech synthesis models. It is inspired by LMsys's [Chatbot Arena](https://chat.lmsys.org/).
### Motivation
The field of speech synthesis has long lacked an accurate method to measure the quality of different models. Objective metrics like WER (word error rate) are unreliable measures of model quality, and subjective measures such as MOS (mean opinion score) are typically small-scale experiments conducted with few listeners. As a result, these measurements are generally not useful for comparing two models of roughly similar quality. To address these drawbacks, we are inviting the community to rank models in an easy-to-use interface, and opening it up to the public in order to make both the opportunity to rank models, as well as the results, more easily accessible to everyone.
### The Arena
The leaderboard allows a user to enter text, which will be synthesized by two models. After listening to each sample, the user can vote on which model sounds more natural. Due to the risks of human bias and abuse, model names are revealed only after a vote is submitted.
### Credits
Thank you to the following individuals who helped make this project possible:
* VB ([Twitter](https://twitter.com/reach_vb) / [Hugging Face](https://huggingface.co/reach-vb))
* ClΓ©mentine Fourrier ([Twitter](https://twitter.com/clefourrier) / [Hugging Face](https://huggingface.co/clefourrier))
* Lucain Pouget ([Twitter](https://twitter.com/Wauplin) / [Hugging Face](https://huggingface.co/Wauplin))
* Yoach Lacombe ([Twitter](https://twitter.com/yoachlacombe) / [Hugging Face](https://huggingface.co/ylacombe))
* Main Horse ([Twitter](https://twitter.com/main_horse) / [Hugging Face](https://huggingface.co/main-horse))
* Sanchit Gandhi ([Twitter](https://twitter.com/sanchitgandhi99) / [Hugging Face](https://huggingface.co/sanchit-gandhi))
* ApolinΓ‘rio Passos ([Twitter](https://twitter.com/multimodalart) / [Hugging Face](https://huggingface.co/multimodalart))
* Pedro Cuenca ([Twitter](https://twitter.com/pcuenq) / [Hugging Face](https://huggingface.co/pcuenq))
{request}
### Privacy statement
We may store text you enter and generated audio. We store a unique ID for each session. You agree that we may collect, share, and/or publish any data you input for research and/or commercial purposes.
### License
Generated audio clips cannot be redistributed and may be used for personal, non-commercial use only.
Random sentences are sourced from a filtered subset of the [Harvard Sentences](https://www.cs.columbia.edu/~hgs/audio/harvard.html).
""".strip()
LDESC = """
## π Leaderboard
Vote to help the community determine the best text-to-speech (TTS) models.
The leaderboard displays models in descending order of how natural they sound (based on votes cast by the community).
Important: In order to help keep results fair, the leaderboard hides results by default until the number of votes passes a threshold. Tick the `Reveal preliminary results` to show models without sufficient votes. Please note that preliminary results may be inaccurate. [This dataset is public](https://huggingface.co/datasets/{DB_DATASET_ID}) and only saves the hardcoded sentences while keeping the voters anonymous.
""".strip()
# def reload_audio_dataset():
# global audio_dataset
# audio_dataset = load_dataset(AUDIO_DATASET_ID)
# return 'Reload Audio Dataset'
def del_db(txt):
if not txt.lower() == 'delete db':
raise gr.Error('You did not enter "delete db"')
# Delete local + remote
os.remove(DB_PATH)
delete_file(path_in_repo=DB_NAME, repo_id=DB_DATASET_ID, repo_type='dataset')
# Recreate
create_db_if_missing()
return 'Delete DB'
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
model_names = {
'styletts2': 'StyleTTS 2',
'tacotron': 'Tacotron',
'tacotronph': 'Tacotron Phoneme',
'tacotrondca': 'Tacotron DCA',
'speedyspeech': 'Speedy Speech',
'overflow': 'Overflow TTS',
'vits': 'VITS',
'vitsneon': 'VITS Neon',
'neuralhmm': 'Neural HMM',
'glow': 'Glow TTS',
'fastpitch': 'FastPitch',
'jenny': 'Jenny',
'tortoise': 'Tortoise TTS',
'xtts2': 'Coqui XTTSv2',
'xtts': 'Coqui XTTS',
'openvoice': 'MyShell OpenVoice',
'elevenlabs': 'ElevenLabs',
'openai': 'OpenAI',
'hierspeech': 'HierSpeech++',
'pheme': 'PolyAI Pheme',
'speecht5': 'SpeechT5',
'metavoice': 'MetaVoice-1B',
}
model_licenses = {
'styletts2': 'MIT',
'tacotron': 'BSD-3',
'tacotronph': 'BSD-3',
'tacotrondca': 'BSD-3',
'speedyspeech': 'BSD-3',
'overflow': 'MIT',
'vits': 'MIT',
'openvoice': 'MIT',
'vitsneon': 'BSD-3',
'neuralhmm': 'MIT',
'glow': 'MIT',
'fastpitch': 'Apache 2.0',
'jenny': 'Jenny License',
'tortoise': 'Apache 2.0',
'xtts2': 'CPML (NC)',
'xtts': 'CPML (NC)',
'elevenlabs': 'Proprietary',
'eleven': 'Proprietary',
'openai': 'Proprietary',
'hierspeech': 'MIT',
'pheme': 'CC-BY',
'speecht5': 'MIT',
'metavoice': 'Apache 2.0',
'elevenlabs': 'Proprietary',
'whisperspeech': 'MIT',
'Pendrokar/xVASynth': 'GPT3',
}
model_links = {
'styletts2': 'https://github.com/yl4579/StyleTTS2',
'tacotron': 'https://github.com/NVIDIA/tacotron2',
'speedyspeech': 'https://github.com/janvainer/speedyspeech',
'overflow': 'https://github.com/shivammehta25/OverFlow',
'vits': 'https://github.com/jaywalnut310/vits',
'openvoice': 'https://github.com/myshell-ai/OpenVoice',
'neuralhmm': 'https://github.com/ketranm/neuralHMM',
'glow': 'https://github.com/jaywalnut310/glow-tts',
'fastpitch': 'https://fastpitch.github.io/',
'tortoise': 'https://github.com/neonbjb/tortoise-tts',
'xtts2': 'https://huggingface.co/coqui/XTTS-v2',
'xtts': 'https://huggingface.co/coqui/XTTS-v1',
'elevenlabs': 'https://elevenlabs.io/',
'openai': 'https://help.openai.com/en/articles/8555505-tts-api',
'hierspeech': 'https://github.com/sh-lee-prml/HierSpeechpp',
'pheme': 'https://github.com/PolyAI-LDN/pheme',
'speecht5': 'https://github.com/microsoft/SpeechT5',
'metavoice': 'https://github.com/metavoiceio/metavoice-src',
}
# def get_random_split(existing_split=None):
# choice = random.choice(list(audio_dataset.keys()))
# if existing_split and choice == existing_split:
# return get_random_split(choice)
# else:
# return choice
# def get_random_splits():
# choice1 = get_random_split()
# choice2 = get_random_split(choice1)
# return (choice1, choice2)
def model_license(name):
print(name)
for k, v in AVAILABLE_MODELS.items():
if k == name:
if v in model_licenses:
return model_licenses[v]
print('---')
return 'Unknown'
def get_leaderboard(reveal_prelim = False):
conn = get_db()
cursor = conn.cursor()
sql = 'SELECT name, upvote, downvote FROM model'
# if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 300'
cursor.execute(sql)
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
# df['license'] = df['name'].map(model_license)
df['name'] = df['name'].replace(model_names)
for i in range(len(df)):
df.loc[i, "name"] = make_link_to_space(df['name'][i], True)
df['votes'] = df['upvote'] + df['downvote']
# df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score
## ELO SCORE
df['score'] = 1200
for i in range(len(df)):
for j in range(len(df)):
if i != j:
expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
actual_a = df['upvote'][i] / df['votes'][i]
actual_b = df['upvote'][j] / df['votes'][j]
df.at[i, 'score'] += round(32 * (actual_a - expected_a))
df.at[j, 'score'] += round(32 * (actual_b - expected_b))
df['score'] = round(df['score'])
## ELO SCORE
df = df.sort_values(by='score', ascending=False)
# medals
def assign_medal(rank, assign):
rank = str(rank + 1)
if assign:
if rank == '1':
rank += 'π₯'
elif rank == '2':
rank += 'π₯'
elif rank == '3':
rank += 'π₯'
return '#'+ rank
df['order'] = [assign_medal(i, not reveal_prelim and len(df) > 2) for i in range(len(df))]
df = df[['order', 'name', 'score', 'votes']]
return df
def make_link_to_space(model_name, for_leaderboard=False):
# create a anchor link if a HF space
style = 'text-decoration: underline;text-decoration-style: dotted;'
title = ''
if model_name in AVAILABLE_MODELS:
style += 'color: var(--link-text-color);'
title = model_name
else:
style += 'font-style: italic;'
title = 'Disabled for Arena (See AVAILABLE_MODELS within code for why)'
model_basename = model_name
if model_name in HF_SPACES:
model_basename = HF_SPACES[model_name]['name']
try:
if(
for_leaderboard
and HF_SPACES[model_name]['is_proprietary']
):
model_basename += ' π'
title += '; π = online only or proprietary'
except:
pass
if '/' in model_name:
return 'π€ <a target="_blank" style="'+ style +'" title="'+ title +'" href="'+ 'https://huggingface.co/spaces/'+ model_name +'">'+ model_basename +'</a>'
# otherwise just return the model name
return model_name
def markdown_link_to_space(model_name):
# create a anchor link if a HF space using markdown syntax
if '/' in model_name:
return 'π€ [' + model_name + '](https://huggingface.co/spaces/' + model_name + ')'
# otherwise just return the model name
return model_name
def mkuuid(uid):
if not uid:
uid = uuid.uuid4()
return uid
def upvote_model(model, uname):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, 1,))
with scheduler.lock:
conn.commit()
cursor.close()
def log_text(text, voteid):
# log only hardcoded sentences
if (text not in sents):
return
conn = get_db()
cursor = conn.cursor()
# TODO: multilang
cursor.execute('INSERT INTO spokentext (spokentext, lang, votelog_id) VALUES (?,?,?)', (text,'en',voteid))
with scheduler.lock:
conn.commit()
cursor.close()
def downvote_model(model, uname):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, -1,))
with scheduler.lock:
conn.commit()
cursor.close()
def a_is_better(model1, model2, userid, text):
return is_better(model1, model2, userid, text, True)
def b_is_better(model1, model2, userid, text):
return is_better(model1, model2, userid, text, False)
def is_better(model1, model2, userid, text, chose_a):
if(
(
not model1 in AVAILABLE_MODELS.keys()
and not model1 in AVAILABLE_MODELS.values()
)
or (
not model2 in AVAILABLE_MODELS.keys()
and not model2 in AVAILABLE_MODELS.values()
)
):
raise gr.Error('Sorry, please try voting again.')
# userid is unique for each cast vote pair
userid = mkuuid(userid)
if model1 and model2:
conn = get_db()
cursor = conn.cursor()
sql_query = 'INSERT INTO votelog (username, chosen, rejected) VALUES (?, ?, ?)'
if chose_a:
cursor.execute(sql_query, (str(userid), model1, model2))
else:
cursor.execute(sql_query, (str(userid), model2, model1))
with scheduler.lock:
conn.commit()
# also retrieve primary key ID
cursor.execute('SELECT last_insert_rowid()')
votelogid = cursor.fetchone()[0]
cursor.close()
if chose_a:
upvote_model(model1, str(userid))
downvote_model(model2, str(userid))
else:
upvote_model(model2, str(userid))
downvote_model(model1, str(userid))
log_text(text, votelogid)
return reload(model1, model2, userid, chose_a=chose_a, chose_b=(not chose_a))
def both_bad(model1, model2, userid):
userid = mkuuid(userid)
if model1 and model2:
downvote_model(model1, str(userid))
downvote_model(model2, str(userid))
return reload(model1, model2, userid)
def both_good(model1, model2, userid):
userid = mkuuid(userid)
if model1 and model2:
upvote_model(model1, str(userid))
upvote_model(model2, str(userid))
return reload(model1, model2, userid)
def reload(chosenmodel1=None, chosenmodel2=None, userid=None, chose_a=False, chose_b=False):
# Select random splits
# row = random.choice(list(audio_dataset['train']))
# options = list(random.choice(list(audio_dataset['train'])).keys())
# split1, split2 = random.sample(options, 2)
# choice1, choice2 = (row[split1], row[split2])
# if chosenmodel1 in model_names:
# chosenmodel1 = model_names[chosenmodel1]
# if chosenmodel2 in model_names:
# chosenmodel2 = model_names[chosenmodel2]
# out = [
# (choice1['sampling_rate'], choice1['array']),
# (choice2['sampling_rate'], choice2['array']),
# split1,
# split2
# ]
# if userid: out.append(userid)
# if chosenmodel1: out.append(f'This model was {chosenmodel1}')
# if chosenmodel2: out.append(f'This model was {chosenmodel2}')
# return out
# return (f'This model was {chosenmodel1}', f'This model was {chosenmodel2}', gr.update(visible=False), gr.update(visible=False))
# return (gr.update(variant='secondary', value=chosenmodel1, interactive=False), gr.update(variant='secondary', value=chosenmodel2, interactive=False))
chosenmodel1 = make_link_to_space(chosenmodel1)
chosenmodel2 = make_link_to_space(chosenmodel2)
out = [
gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False)
]
style = 'text-align: center; font-size: 1rem; margin-bottom: 0; padding: var(--input-padding)'
if chose_a == True:
out.append(gr.update(value=f'<p style="{style}">Your vote: {chosenmodel1}</p>', visible=True))
out.append(gr.update(value=f'<p style="{style}">{chosenmodel2}</p>', visible=True))
else:
out.append(gr.update(value=f'<p style="{style}">{chosenmodel1}</p>', visible=True))
out.append(gr.update(value=f'<p style="{style}">Your vote: {chosenmodel2}</p>', visible=True))
out.append(gr.update(visible=True))
return out
with gr.Blocks() as leaderboard:
gr.Markdown(LDESC)
# df = gr.Dataframe(interactive=False, value=get_leaderboard())
df = gr.Dataframe(
interactive=False,
min_width=0,
wrap=True,
column_widths=[30, 200, 50, 50],
datatype=["str", "html", "number", "number"]
)
with gr.Row():
reveal_prelim = gr.Checkbox(label="Reveal preliminary results", info="Show all models, including models with very few human ratings.", scale=1)
reloadbtn = gr.Button("Refresh", scale=3)
reveal_prelim.input(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
leaderboard.load(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
reloadbtn.click(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
# gr.Markdown("DISCLAIMER: The licenses listed may not be accurate or up to date, you are responsible for checking the licenses before using the models. Also note that some models may have additional usage restrictions.")
# with gr.Blocks() as vote:
# useridstate = gr.State()
# gr.Markdown(INSTR)
# # gr.LoginButton()
# with gr.Row():
# gr.HTML('<div align="left"><h3>Model A</h3></div>')
# gr.HTML('<div align="right"><h3>Model B</h3></div>')
# model1 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1)
# model2 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1)
# # with gr.Group():
# # with gr.Row():
# # prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
# # prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
# # with gr.Row():
# # aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# # aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# with gr.Group():
# with gr.Row():
# with gr.Column():
# with gr.Group():
# prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", lines=1, max_lines=1)
# aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# with gr.Column():
# with gr.Group():
# prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right", lines=1, max_lines=1)
# aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# with gr.Row():
# abetter = gr.Button("A is Better", variant='primary', scale=4)
# # skipbtn = gr.Button("Skip", scale=1)
# bbetter = gr.Button("B is Better", variant='primary', scale=4)
# with gr.Row():
# bothbad = gr.Button("Both are Bad", scale=2)
# skipbtn = gr.Button("Skip", scale=1)
# bothgood = gr.Button("Both are Good", scale=2)
# outputs = [aud1, aud2, model1, model2, useridstate, prevmodel1, prevmodel2]
# abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
# bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])
# vote.load(reload, outputs=[aud1, aud2, model1, model2])
def doloudnorm(path):
data, rate = sf.read(path)
meter = pyln.Meter(rate)
loudness = meter.integrated_loudness(data)
loudness_normalized_audio = pyln.normalize.loudness(data, loudness, -12.0)
sf.write(path, loudness_normalized_audio, rate)
def doresample(path_to_wav):
pass
##########################
# 2x speedup (hopefully) #
##########################
def synthandreturn(text, request: gr.Request):
text = text.strip()
if len(text) > MAX_SAMPLE_TXT_LENGTH:
raise gr.Error(f'You exceeded the limit of {MAX_SAMPLE_TXT_LENGTH} characters')
if len(text) < MIN_SAMPLE_TXT_LENGTH:
raise gr.Error(f'Please input a text longer than {MIN_SAMPLE_TXT_LENGTH} characters')
if (
# test toxicity if not prepared text
text not in sents
and toxicity.predict(text)['toxicity'] > 0.8
):
print(f'Detected toxic content! "{text}"')
raise gr.Error('Your text failed the toxicity test')
if not text:
raise gr.Error(f'You did not enter any text')
# Check language
try:
if (
text not in sents
and not detect(text) == "en"
):
gr.Warning('Warning: The input text may not be in English')
except:
pass
# Get two random models
# forced model: your TTS model versus The World!!!
# mdl1 = 'Pendrokar/xVASynth'
# vsModels = dict(AVAILABLE_MODELS)
# del vsModels[mdl1]
# randomize position of the forced model
# mdl2 = random.sample(list(vsModels.keys()), 1)
# forced random
# mdl1, mdl2 = random.sample(list([mdl1, mdl2[0]]), 2)
# actual random
mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
# pointless saving of text to DB
# log_text(text)
print("[debug] Using", mdl1, mdl2)
def predict_and_update_result(text, model, result_storage, request:gr.Request):
hf_headers = {}
try:
hf_headers = {"X-IP-Token": request.headers['x-ip-token']}
except:
pass
# 3 attempts
attempt_count = 0
while attempt_count < 2:
try:
if model in AVAILABLE_MODELS:
if '/' in model:
# Use public HF Space
#if (model not in hf_clients):
hf_clients[model] = Client(model, hf_token=hf_token, headers=hf_headers)
mdl_space = hf_clients[model]
# print(f"{model}: Fetching endpoints of HF Space")
# assume the index is one of the first 9 return params
return_audio_index = int(HF_SPACES[model]['return_audio_index'])
endpoints = mdl_space.view_api(all_endpoints=True, print_info=False, return_format='dict')
api_name = None
fn_index = None
end_parameters = None
# has named endpoint
if '/' == HF_SPACES[model]['function'][0]:
# audio sync function name
api_name = HF_SPACES[model]['function']
end_parameters = _get_param_examples(
endpoints['named_endpoints'][api_name]['parameters']
)
# has unnamed endpoint
else:
# endpoint index is the first character
fn_index = int(HF_SPACES[model]['function'])
end_parameters = _get_param_examples(
endpoints['unnamed_endpoints'][str(fn_index)]['parameters']
)
space_inputs = _override_params(end_parameters, model)
# force text
space_inputs[HF_SPACES[model]['text_param_index']] = text
print(f"{model}: Sending request to HF Space")
results = mdl_space.predict(*space_inputs, api_name=api_name, fn_index=fn_index)
# return path to audio
result = results
if (not isinstance(results, str)):
# return_audio_index may be a filepath string
result = results[return_audio_index]
if (isinstance(result, dict)):
# return_audio_index is a dictionary
result = results[return_audio_index]['value']
else:
# Use the private HF Space
result = router.predict(text, AVAILABLE_MODELS[model].lower(), api_name="/synthesize")
else:
result = router.predict(text, model.lower(), api_name="/synthesize")
break
except Exception as e:
attempt_count += 1
print(repr(e))
print(f"{model}: Unable to call API (attempt: {attempt_count})")
# sleep for three seconds
time.sleep(3)
# Fetch and store client again
hf_headers = {}
#hf_clients[model] = Client(model, hf_token=hf_token)
if attempt_count > 2:
raise gr.Error(f"{model}: Failed to call model")
else:
print('Done with', model)
try:
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f:
audio = AudioSegment.from_file(result)
current_sr = audio.frame_rate
if current_sr > 24000:
print(f"{model}: Resampling")
audio = audio.set_frame_rate(24000)
try:
print(f"{model}: Trying to normalize audio")
audio = match_target_amplitude(audio, -20)
except:
print(f"{model}: [WARN] Unable to normalize audio")
audio.export(f.name, format="wav")
os.unlink(result)
result = f.name
except:
print(f"{model}: [WARN] Unable to resample audio")
pass
if model in AVAILABLE_MODELS.keys(): model = AVAILABLE_MODELS[model]
result_storage[model] = result
def _get_param_examples(parameters):
example_inputs = []
for param_info in parameters:
if (
param_info['component'] == 'Radio'
or param_info['component'] == 'Dropdown'
or param_info['component'] == 'Audio'
or param_info['python_type']['type'] == 'str'
):
example_inputs.append(str(param_info['example_input']))
continue
if param_info['python_type']['type'] == 'int':
example_inputs.append(int(param_info['example_input']))
continue
if param_info['python_type']['type'] == 'float':
example_inputs.append(float(param_info['example_input']))
continue
if param_info['python_type']['type'] == 'bool':
example_inputs.append(bool(param_info['example_input']))
continue
return example_inputs
def _override_params(inputs, modelname):
try:
for key,value in OVERRIDE_INPUTS[modelname].items():
inputs[key] = value
print(f"{modelname}: Default inputs overridden by Arena")
except:
pass
return inputs
mdl1k = mdl1
mdl2k = mdl2
print(mdl1k, mdl2k)
if mdl1 in AVAILABLE_MODELS.keys(): mdl1k=AVAILABLE_MODELS[mdl1]
if mdl2 in AVAILABLE_MODELS.keys(): mdl2k=AVAILABLE_MODELS[mdl2]
results = {}
print(f"Sending models {mdl1k} and {mdl2k} to API")
thread1 = threading.Thread(target=predict_and_update_result, args=(text, mdl1k, results, request))
thread2 = threading.Thread(target=predict_and_update_result, args=(text, mdl2k, results, request))
thread1.start()
thread2.start()
thread1.join(180)
thread2.join(180)
#debug
# print(results)
# print(list(results.keys())[0])
# y, sr = librosa.load(results[list(results.keys())[0]], sr=None)
# print(sr)
# print(list(results.keys())[1])
# y, sr = librosa.load(results[list(results.keys())[1]], sr=None)
# print(sr)
#debug
# outputs = [text, btn, r2, model1, model2, aud1, aud2, abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
# cache the result
for model in [mdl1k, mdl2k]:
# skip caching if not hardcoded sentence
if (text not in sents):
break
already_cached = False
# check if already cached
for cached_sample in cached_samples:
# TODO:replace cached
if (cached_sample.transcript == text and cached_sample.modelName == model):
already_cached = True
break
if (already_cached):
continue
try:
cached_samples.append(Sample(results[model], text, model))
except:
pass
# all_pairs = generate_matching_pairs(cached_samples)
print(f"Retrieving models {mdl1k} and {mdl2k} from API")
return (
text,
"Synthesize",
gr.update(visible=True), # r2
mdl1, # model1
mdl2, # model2
gr.update(visible=True, value=results[mdl1k], interactive=False, autoplay=True), # aud1
gr.update(visible=True, value=results[mdl2k], interactive=False, autoplay=False), # aud2
gr.update(visible=True, interactive=False), #abetter
gr.update(visible=True, interactive=False), #bbetter
gr.update(visible=False), #prevmodel1
gr.update(visible=False), #prevmodel2
gr.update(visible=False), #nxt round btn
# reset gr.State aplayed & bplayed
False, #aplayed
False, #bplayed
)
# return (
# text,
# "Synthesize",
# gr.update(visible=True), # r2
# mdl1, # model1
# mdl2, # model2
# # 'Vote to reveal model A', # prevmodel1
# gr.update(visible=True, value=router.predict(
# text,
# AVAILABLE_MODELS[mdl1],
# api_name="/synthesize"
# )), # aud1
# # 'Vote to reveal model B', # prevmodel2
# gr.update(visible=True, value=router.predict(
# text,
# AVAILABLE_MODELS[mdl2],
# api_name="/synthesize"
# )), # aud2
# gr.update(visible=True, interactive=True),
# gr.update(visible=True, interactive=True),
# gr.update(visible=False),
# gr.update(visible=False),
# gr.update(visible=False), #nxt round btn
# )
def unlock_vote(btn_index, aplayed, bplayed):
# sample played
if btn_index == 0:
aplayed = True
if btn_index == 1:
bplayed = True
# both audio samples played
if bool(aplayed) and bool(bplayed):
# print('Both audio samples played, voting unlocked')
return [gr.update(interactive=True), gr.update(interactive=True), True, True]
return [gr.update(), gr.update(), aplayed, bplayed]
def play_other(bplayed):
return bplayed
def get_userid(session_hash: str, request):
# JS cookie
if (session_hash != ''):
# print('auth by session cookie')
return sha1(bytes(session_hash.encode('ascii')), usedforsecurity=False).hexdigest()
if request.username:
# print('auth by username')
# by HuggingFace username - requires `auth` to be enabled therefore denying access to anonymous users
return sha1(bytes(request.username.encode('ascii')), usedforsecurity=False).hexdigest()
else:
# print('auth by ip')
# by IP address - unreliable when gradio within HTML iframe
# return sha1(bytes(request.client.host.encode('ascii')), usedforsecurity=False).hexdigest()
# by browser session cookie - Gradio on HF is run in an HTML iframe, access to parent session required to reach session token
# return sha1(bytes(request.headers.encode('ascii'))).hexdigest()
# by browser session hash - Not a cookie, session hash changes on page reload
return sha1(bytes(request.session_hash.encode('ascii')), usedforsecurity=False).hexdigest()
# Give user a cached audio sample pair they have yet to vote on
def give_cached_sample(session_hash: str, request: gr.Request):
# add new userid to voting_users from Browser session hash
# stored only in RAM
userid = get_userid(session_hash, request)
if userid not in voting_users:
voting_users[userid] = User(userid)
def get_next_pair(user: User):
# FIXME: all_pairs var out of scope
# all_pairs = generate_matching_pairs(cached_samples)
# for pair in all_pairs:
for pair in generate_matching_pairs(cached_samples):
hash1 = md5(bytes((pair[0].modelName + pair[0].transcript).encode('ascii'))).hexdigest()
hash2 = md5(bytes((pair[1].modelName + pair[1].transcript).encode('ascii'))).hexdigest()
pair_key = (hash1, hash2)
if (
pair_key not in user.voted_pairs
# or in reversed order
and (pair_key[1], pair_key[0]) not in user.voted_pairs
):
return pair
return None
pair = get_next_pair(voting_users[userid])
if pair is None:
return [
*clear_stuff(),
# disable get cached sample button
gr.update(interactive=False)
]
return (
gr.update(visible=True, value=pair[0].transcript, elem_classes=['blurred-text']),
"Synthesize",
gr.update(visible=True), # r2
pair[0].modelName, # model1
pair[1].modelName, # model2
gr.update(visible=True, value=pair[0].filename, interactive=False, autoplay=True), # aud1
gr.update(visible=True, value=pair[1].filename, interactive=False, autoplay=False), # aud2
gr.update(visible=True, interactive=False), #abetter
gr.update(visible=True, interactive=False), #bbetter
gr.update(visible=False), #prevmodel1
gr.update(visible=False), #prevmodel2
gr.update(visible=False), #nxt round btn
# reset aplayed, bplayed audio playback events
False, #aplayed
False, #bplayed
# fetch cached btn
gr.update(interactive=True)
)
# note the vote on cached sample pair
def voted_on_cached(modelName1: str, modelName2: str, transcript: str, session_hash: str, request: gr.Request):
userid = get_userid(session_hash, request)
# print(f'userid voted on cached: {userid}')
if userid not in voting_users:
voting_users[userid] = User(userid)
hash1 = md5(bytes((modelName1 + transcript).encode('ascii'))).hexdigest()
hash2 = md5(bytes((modelName2 + transcript).encode('ascii'))).hexdigest()
voting_users[userid].voted_pairs.add((hash1, hash2))
return []
def randomsent():
return 'β‘', random.choice(sents), 'π²'
def clear_stuff():
return [
gr.update(visible=True, value="", elem_classes=[]),
"Synthesize",
gr.update(visible=False), # r2
'', # model1
'', # model2
gr.update(visible=False, interactive=False, autoplay=False), # aud1
gr.update(visible=False, interactive=False, autoplay=False), # aud2
gr.update(visible=False, interactive=False), #abetter
gr.update(visible=False, interactive=False), #bbetter
gr.update(visible=False), #prevmodel1
gr.update(visible=False), #prevmodel2
gr.update(visible=False), #nxt round btn
False, #aplayed
False, #bplayed
]
def disable():
return [gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)]
def enable():
return [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)]
def unblur_text():
return gr.update(elem_classes=[])
unblur_js = 'document.getElementById("arena-text-input").classList.remove("blurred-text")'
shortcut_js = """
<script>
function shortcuts(e) {
var event = document.all ? window.event : e;
switch (e.target.tagName.toLowerCase()) {
case "input":
case "textarea":
break;
default:
switch (e.key.toLowerCase()) {
case "a":
document.getElementById("arena-a-better").click();
break;
case "b":
document.getElementById("arena-b-better").click();
break;
case "n":
document.getElementById("arena-next-round").click();
break;
}
}
}
document.addEventListener('keypress', shortcuts, false);
</script>
"""
with gr.Blocks() as vote:
session_hash = gr.Textbox(visible=False, value='')
# sample played, using Checkbox so that JS can fetch the value
aplayed = gr.Checkbox(visible=False, value=False)
bplayed = gr.Checkbox(visible=False, value=False)
# voter ID
useridstate = gr.State()
gr.Markdown(INSTR)
with gr.Group():
with gr.Row():
cachedt = gr.Button('β‘', scale=0, min_width=0, variant='tool', interactive=True)
text = gr.Textbox(
container=False,
show_label=False,
placeholder="Enter text to synthesize",
lines=1,
max_lines=1,
scale=9999999,
min_width=0,
elem_id="arena-text-input",
)
randomt = gr.Button('π²', scale=0, min_width=0, variant='tool')
randomt\
.click(randomsent, outputs=[cachedt, text, randomt])\
.then(None, js="() => "+ unblur_js)
btn = gr.Button("Synthesize", variant='primary')
model1 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
model2 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
with gr.Row(visible=False) as r2:
with gr.Column():
with gr.Group():
aud1 = gr.Audio(
interactive=False,
show_label=False,
show_download_button=False,
show_share_button=False,
waveform_options={'waveform_progress_color': '#EF4444'},
# var(--color-red-500)'}); gradio only accepts HEX and CSS color
)
abetter = gr.Button(
"A is better [a]",
elem_id='arena-a-better',
variant='primary',
interactive=False,
)
prevmodel1 = gr.HTML(show_label=False, value="Vote to reveal model A", visible=False)
with gr.Column():
with gr.Group():
aud2 = gr.Audio(
interactive=False,
show_label=False,
show_download_button=False,
show_share_button=False,
waveform_options={'waveform_progress_color': '#3C82F6'},
# var(--secondary-500)'}); gradio only accepts HEX and CSS color
)
bbetter = gr.Button(
"B is better [b]",
elem_id='arena-b-better',
variant='primary',
interactive=False
)
prevmodel2 = gr.HTML(show_label=False, value="Vote to reveal model B", visible=False)
nxtroundbtn = gr.Button(
'β‘ Next round [n]',
elem_id='arena-next-round',
visible=False
)
# outputs = [text, btn, r2, model1, model2, prevmodel1, aud1, prevmodel2, aud2, abetter, bbetter]
outputs = [
text,
btn,
r2,
model1,
model2,
aud1,
aud2,
abetter,
bbetter,
prevmodel1,
prevmodel2,
nxtroundbtn,
aplayed,
bplayed,
]
"""
text,
"Synthesize",
gr.update(visible=True), # r2
mdl1, # model1
mdl2, # model2
gr.update(visible=True, value=results[mdl1]), # aud1
gr.update(visible=True, value=results[mdl2]), # aud2
gr.update(visible=True, interactive=False), #abetter
gr.update(visible=True, interactive=False), #bbetter
gr.update(visible=False), #prevmodel1
gr.update(visible=False), #prevmodel2
gr.update(visible=False), #nxt round btn"""
btn\
.click(disable, outputs=[btn, abetter, bbetter, cachedt])\
.then(synthandreturn, inputs=[text], outputs=outputs)\
.then(enable, outputs=[btn, gr.State(), gr.State(), cachedt])\
.then(None, js="() => "+ unblur_js)
nxtroundbtn\
.click(disable, outputs=[btn, abetter, bbetter, cachedt])\
.then(give_cached_sample, inputs=[session_hash], outputs=[*outputs, cachedt])\
.then(enable, outputs=[btn, gr.State(), gr.State(), gr.State()])
# fetch a comparison pair from cache
cachedt\
.click(disable, outputs=[btn, abetter, bbetter, cachedt])\
.then(give_cached_sample, inputs=[session_hash], outputs=[*outputs, cachedt])\
.then(enable, outputs=[btn, gr.State(), gr.State(), gr.State()])
# TODO: await download of sample before allowing playback
# Allow interaction with the vote buttons only when both audio samples have finished playing
aud1\
.stop(
unlock_vote,
outputs=[abetter, bbetter, aplayed, bplayed],
inputs=[gr.State(value=0), aplayed, bplayed],
)\
.then(
None,
inputs=[bplayed],
js="(b) => b ? 0 : document.querySelector('.row .gap+.gap button.play-pause-button').click()",
)
# autoplay if unplayed
aud2\
.stop(
unlock_vote,
outputs=[abetter, bbetter, aplayed, bplayed],
inputs=[gr.State(value=1), aplayed, bplayed],
)\
.then(None, js="() => "+ unblur_js)
# aud1.input(
# None,
# js="() => {console.log(new Date().getTime().toString()+'input')}",
# )
# aud1.change(
# None,
# js="() => {console.log(new Date().getTime().toString()+'change')}",
# )
# nxt_outputs = [prevmodel1, prevmodel2, abetter, bbetter]
nxt_outputs = [abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
abetter\
.click(a_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate, text])\
.then(voted_on_cached, inputs=[model1, model2, text, session_hash], outputs=[])
bbetter\
.click(b_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate, text])\
.then(voted_on_cached, inputs=[model1, model2, text, session_hash], outputs=[])
# skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
# bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])
# get session cookie
vote\
.load(
None,
None,
session_hash,
js="() => { return getArenaCookie('session') }",
)
# give a cached sample pair to voter; .then() did not work here
vote\
.load(give_cached_sample, inputs=[session_hash], outputs=[*outputs, cachedt])
with gr.Blocks() as about:
gr.Markdown(ABOUT)
# with gr.Blocks() as admin:
# rdb = gr.Button("Reload Audio Dataset")
# # rdb.click(reload_audio_dataset, outputs=rdb)
# with gr.Group():
# dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
# ddb = gr.Button("Delete DB")
# ddb.click(del_db, inputs=dbtext, outputs=ddb)
# Blur cached sample text so the voting user picks up mispronouncements
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none} .blurred-text {filter: blur(0.15em);}", head=shortcut_js, title="TTS Arena") as demo:
gr.Markdown(DESCR)
# gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
gr.TabbedInterface([vote, leaderboard, about], ['π³οΈ Vote', 'π Leaderboard', 'π About'])
if CITATION_TEXT:
with gr.Row():
with gr.Accordion("Citation", open=False):
gr.Markdown(f"If you use this data in your publication, please cite us!\n\nCopy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```\n\nPlease remember that all generated audio clips should be assumed unsuitable for redistribution or commercial use.")
demo\
.queue(api_open=False, default_concurrency_limit=3)\
.launch(show_api=False, show_error=True)
|