Zymrael
first
f34e8aa
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import gradio as gr
from einops import rearrange, repeat
import torchvision.transforms.functional as ttf
from timm.models.convmixer import ConvMixer
import functorch
def img_to_patches(im, patch_h, patch_w):
"B, C, H, W -> B, C, D, h_patch, w_patch"
bs, c, h, w = im.shape
im = im.unfold(-1, patch_h, patch_w).unfold(2, patch_h, patch_w)
im = im.permute(0, 1, 2, 3, 5, 4)
im = im.contiguous().view(bs, c, -1, patch_h, patch_w)
return im
def patches_to_img(patches, num_patch_h, num_patch_w):
"B, C, D, h_patch, w_patch -> B, C, H, W"
bs, c, d, h, w = patches.shape
patches = patches.view(bs, c, num_patch_h, num_patch_w, h, w)
# fold patches
patches = torch.cat([patches[..., k, :, :] for k in range(num_patch_w)], dim=-1)
x = torch.cat([patches[..., k, :, :] for k in range(num_patch_h)], dim=-2)
return x
def vmapped_rotate(x, angle, in_dims=1):
"B, C, D, H, W -> B, C, D, H, W"
rotate_ = functorch.vmap(ttf.rotate, in_dims=in_dims, out_dims=in_dims)
return rotate_(x, angle=angle)
class CollageOperator2d(nn.Module):
def __init__(self, res, rh, rw, dh=None, dw=None, use_augmentations=False):
"""Collage Operator for two-dimensional data. Given a fractal code, it outputs the corresponding fixed-point.
Args:
res (int): Spatial resolutions of input (and output) data.
rh (int): Height of range (target) square patches.
rw (int): Width of range (target) square patches.
dh (int, optional): Height of range domain (source) patches. Defaults to `res`.
dw (int, optional): Width of range domain (source) patches. Defaults to `res`.
use_augmentations (bool, optional): Use augmentations of domain square patches at each decoding iteration. Defaults to `False`.
"""
super().__init__()
self.dh, self.dw = dh, dw
if self.dh is None: self.dh = res
if self.dw is None: self.dw = res
# 5 refers to the 5 copies of domain patches generated with the current choice of augmentations:
# 3 rotations (90, 180, 270), horizontal flips and vertical flips.
self.n_aug_transforms = 9 if use_augmentations else 0
# precompute useful quantities related to the partitioning scheme into patches, given
# the desired `dh`, `dw`, `rh`, `rw`.
partition_info = self.collage_partition_info(res, self.dh, self.dw, rh, rw)
self.n_dh, self.n_dw, self.n_rh, self.n_rw, self.h_factors, self.w_factors, self.n_domains, self.n_ranges = partition_info
# At each step of the collage, all (source) domain patches are pooled down to the size of range (target) patches.
# Notices how the pooling factors do not change if one decodes at higher resolutions, since both domain and range
# patch sizes are multiplied by the same integer.
self.pool = nn.AvgPool3d(kernel_size=(1, self.h_factors, self.w_factors), stride=(1, self.h_factors, self.w_factors))
def collage_operator(self, z, collage_weight, collage_bias):
"""Collage Operator (decoding). Performs the steps described in Def. 3.1, Figure 2."""
# Given the current iterate `z`, we split it into domain patches according to the partitioning scheme.
domains = img_to_patches(z)
# Pool domains (pre augmentation) to range patch sizes.
pooled_domains = self.pool(domains)
# If needed, produce additional candidate domain patches as augmentations of existing domains.
# Auxiliary learned feature maps / patches are also introduced here.
if self.n_aug_transforms > 1:
pooled_domains = self.generate_candidates(pooled_domains)
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.num_ranges)
# Apply the affine maps to domain patches
range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, collage_weight)
range_domains = range_domains + collage_bias[..., None, None]
# Reconstruct data by "composing" the output patches back together (collage!).
z = patches_to_img(range_domains)
return z
def decode_step(self, z, weight, bias, superres_factor, return_patches=False):
"""Single Collage Operator step. Performs the steps described in:
https://arxiv.org/pdf/2204.07673.pdf (Def. 3.1, Figure 2).
"""
# Given the current iterate `z`, we split it into `n_domains` domain patches.
domains = img_to_patches(z, patch_h=self.dh * superres_factor, patch_w=self.dw * superres_factor)
# Pool domains (pre augmentation) for compatibility with range patches.
pooled_domains = self.pool(domains)
# If needed, produce additional candidate domain patches as augmentations of existing domains.
if self.n_aug_transforms > 1:
pooled_domains = self.generate_candidates(pooled_domains)
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.n_ranges)
# Apply the affine maps to domain patches
range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, weight)
range_domains = range_domains + bias[:, :, :, None, None]
# Reconstruct data by "composing" the output patches back together (collage!).
z = patches_to_img(range_domains, self.n_rh, self.n_rw)
if return_patches: return z, (domains, pooled_domains, range_domains)
return z
def generate_candidates(self, domains):
domains = domains.permute(0,2,1,3,4)
rotations = [vmapped_rotate(domains, angle=angle) for angle in (90, 180, 270)]
hflips = ttf.hflip(domains)
vflips = ttf.vflip(domains)
br_shift = ttf.adjust_brightness(domains, 0.5)
cr_shift = ttf.adjust_contrast(domains, 0.5)
hue_shift = ttf.adjust_hue(domains, 0.5)
sat_shift = ttf.adjust_saturation(domains, 0.5)
domains = torch.cat([domains, *rotations, hflips, vflips, br_shift, cr_shift, hue_shift, sat_shift], dim=1)
return domains.permute(0,2,1,3,4)
def forward(self, x, co_w, co_bias, decode_steps=20, superres_factor=1):
B, C, H, W = x.shape
# It does not matter which initial condition is chosen, so long as the dimensions match.
# The fixed-point of a Collage Operator is uniquely determined* by the fractal code
# *: and auxiliary learned patches, if any.
z = torch.randn(B, C, H * superres_factor, W * superres_factor).to(x.device)
for _ in range(decode_steps):
z = self.decode_step(z, co_w, co_bias, superres_factor)
return z
def collage_partition_info(self, input_res, dh, dw, rh, rw):
"""
Computes auxiliary information for the collage (number of source and target domains, and relative size factors)
"""
height = width = input_res
n_dh, n_dw = height // dh, width // dw
n_domains = n_dh * n_dw
# Adjust number of domain patches to include augmentations
n_domains = n_domains + n_domains * self.n_aug_transforms # (3 rotations, hflip, vlip)
h_factors, w_factors = dh // rh, dw // rw
n_rh, n_rw = input_res // rh, input_res // rw
n_ranges = n_rh * n_rw
return n_dh, n_dw, n_rh, n_rw, h_factors, w_factors, n_domains, n_ranges
class NeuralCollageOperator2d(nn.Module):
def __init__(self, out_res, out_channels, rh, rw, dh=None, dw=None, net=None, use_augmentations=False):
super().__init__()
self.co = CollageOperator2d(out_res, rh, rw, dh, dw, use_augmentations)
# In a Collage Operator, the affine map requires a single scalar weight
# for each pair of domain and range patches, and a single scalar bias for each range.
# `net` learns to output these weights based on the objective.
self.co_w_dim = self.co.n_domains * self.co.n_ranges * out_channels
self.co_bias_dim = self.co.n_ranges * out_channels
tot_out_dim = self.co_w_dim + self.co_bias_dim
# Does not need to be a ConvMixer: for deep generative Neural Collages `net` can be e.g, a VDVAE.
if net is None:
net = ConvMixer(dim=32, depth=8, kernel_size=9, patch_size=7, num_classes=tot_out_dim)
self.net = net
self.softmax = nn.Softmax(dim=-1)
self.tanh = nn.Tanh()
def forward(self, x, decode_steps=10, superres_factor=1, return_co_code=False):
B, C, H, W = x.shape
co_code = self.net(x) # B, C, co_w_dim + co_mix_dim + co_bias_dim
co_w, co_bias = torch.split(co_code, [self.co_w_dim, self.co_bias_dim], dim=-1)
co_w = co_w.view(B, C, self.co.n_domains, self.co.n_ranges)
# No restrictions on co_w, thus no guarantee of contractiveness.
# In the full jax version of Neural Collages we enforce the constraint |co_w| < 1 (elementwise).
co_bias = co_bias.view(B, C, self.co.n_ranges)
co_bias = self.tanh(co_bias)
z = self.co(x, co_w, co_bias, decode_steps=decode_steps, superres_factor=superres_factor)
if return_co_code: return z, co_w, co_bias
else: return z
def fractalize(img, superresolution_factor=1):
superresolution_factor = int(superresolution_factor)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
im = np.asarray(img)
im = torch.from_numpy(im).permute(2,0,1).to(device)
co = NeuralCollageOperator2d(out_res=100, out_channels=3, rh=2, rw=2, dh=100, dw=100).to(device)
opt = torch.optim.Adam(co.parameters(), lr=1e-2)
objective = nn.MSELoss()
norm_im = im.float().unsqueeze(0) / 255
for _ in range(200):
recon = co(norm_im, decode_steps=10, return_co_code=False)
loss = objective(recon, norm_im)
loss.backward()
opt.step()
opt.zero_grad()
fractal_img = co(norm_im, decode_steps=10, superres_factor=superresolution_factor)[0].permute(1,2,0).clamp(-1, 1)
return fractal_img.cpu().detach().numpy()
demo = gr.Interface(
fn=fractalize,
inputs=[gr.Image(shape=(100, 100), image_mode='RGB'), gr.Slider(1, 40, step=1)],
outputs="image"
)
demo.launch()