Spaces:
Sleeping
Sleeping
import warnings | |
warnings.filterwarnings('ignore') | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from matplotlib.colors import ListedColormap | |
from sklearn.model_selection import train_test_split | |
from scipy.stats import boxcox | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.svm import SVC | |
from sklearn.model_selection import GridSearchCV, StratifiedKFold | |
from sklearn.metrics import classification_report, accuracy_score | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier | |
%matplotlib inline | |
# Set the resolution of the plotted figures | |
plt.rcParams['figure.dpi'] = 200 | |
# Configure Seaborn plot styles: Set background color and use dark grid | |
sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid') | |
df = pd.read_csv("/content/heart.csv") | |
df | |
df.info() | |
# Define the continuous features | |
continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] | |
# Identify the features to be converted to object data type | |
features_to_convert = [feature for feature in df.columns if feature not in continuous_features] | |
# Convert the identified features to object data type | |
df[features_to_convert] = df[features_to_convert].astype('object') | |
df.dtypes | |
# Get the summary statistics for numerical variables | |
df.describe().T | |
# Get the summary statistics for categorical variables | |
df.describe(include='object') | |
# Filter out continuous features for the univariate analysis | |
df_continuous = df[continuous_features] | |
# Set up the subplot | |
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(15, 10)) | |
# Loop to plot histograms for each continuous feature | |
for i, col in enumerate(df_continuous.columns): | |
x = i // 3 | |
y = i % 3 | |
values, bin_edges = np.histogram(df_continuous[col], | |
range=(np.floor(df_continuous[col].min()), np.ceil(df_continuous[col].max()))) | |
graph = sns.histplot(data=df_continuous, x=col, bins=bin_edges, kde=True, ax=ax[x, y], | |
edgecolor='none', color='red', alpha=0.6, line_kws={'lw': 3}) | |
ax[x, y].set_xlabel(col, fontsize=15) | |
ax[x, y].set_ylabel('Count', fontsize=12) | |
ax[x, y].set_xticks(np.round(bin_edges, 1)) | |
ax[x, y].set_xticklabels(ax[x, y].get_xticks(), rotation=45) | |
ax[x, y].grid(color='lightgrey') | |
for j, p in enumerate(graph.patches): | |
ax[x, y].annotate('{}'.format(p.get_height()), (p.get_x() + p.get_width() / 2, p.get_height() + 1), | |
ha='center', fontsize=10, fontweight="bold") | |
textstr = '\n'.join(( | |
r'$\mu=%.2f$' % df_continuous[col].mean(), | |
r'$\sigma=%.2f$' % df_continuous[col].std() | |
)) | |
ax[x, y].text(0.75, 0.9, textstr, transform=ax[x, y].transAxes, fontsize=12, verticalalignment='top', | |
color='white', bbox=dict(boxstyle='round', facecolor='#ff826e', edgecolor='white', pad=0.5)) | |
ax[1,2].axis('off') | |
plt.suptitle('Distribution of Continuous Variables', fontsize=20) | |
plt.tight_layout() | |
plt.subplots_adjust(top=0.92) | |
plt.show() | |
# Filter out categorical features for the univariate analysis | |
categorical_features = df.columns.difference(continuous_features) | |
df_categorical = df[categorical_features] | |
# Set up the subplot for a 4x2 layout | |
fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(15, 18)) | |
# Loop to plot bar charts for each categorical feature in the 4x2 layout | |
for i, col in enumerate(categorical_features): | |
row = i // 2 | |
col_idx = i % 2 | |
# Calculate frequency percentages | |
value_counts = df[col].value_counts(normalize=True).mul(100).sort_values() | |
# Plot bar chart | |
value_counts.plot(kind='barh', ax=ax[row, col_idx], width=0.8, color='red') | |
# Add frequency percentages to the bars | |
for index, value in enumerate(value_counts): | |
ax[row, col_idx].text(value, index, str(round(value, 1)) + '%', fontsize=15, weight='bold', va='center') | |
ax[row, col_idx].set_xlim([0, 95]) | |
ax[row, col_idx].set_xlabel('Frequency Percentage', fontsize=12) | |
ax[row, col_idx].set_title(f'{col}', fontsize=20) | |
ax[4,1].axis('off') | |
plt.suptitle('Distribution of Categorical Variables', fontsize=22) | |
plt.tight_layout() | |
plt.subplots_adjust(top=0.95) | |
plt.show() | |
# Set color palette | |
sns.set_palette(['#ff826e', 'red']) | |
# Create the subplots | |
fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]}) | |
# Loop through each continuous feature to create barplots and kde plots | |
for i, col in enumerate(continuous_features): | |
# Barplot showing the mean value of the feature for each target category | |
graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0]) | |
# KDE plot showing the distribution of the feature for each target category | |
sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0') | |
sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1') | |
ax[i,1].set_yticks([]) | |
ax[i,1].legend(title='Heart Disease', loc='upper right') | |
# Add mean values to the barplot | |
for cont in graph.containers: | |
graph.bar_label(cont, fmt=' %.3g') | |
# Set the title for the entire figure | |
plt.suptitle('Continuous Features vs Target Distribution', fontsize=22) | |
plt.tight_layout() | |
plt.show() | |
# Set color palette | |
sns.set_palette(['#ff826e', 'red']) | |
# Create the subplots | |
fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]}) | |
# Loop through each continuous feature to create barplots and kde plots | |
for i, col in enumerate(continuous_features): | |
# Barplot showing the mean value of the feature for each target category | |
graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0]) | |
# KDE plot showing the distribution of the feature for each target category | |
sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0') | |
sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1') | |
ax[i,1].set_yticks([]) | |
ax[i,1].legend(title='Heart Disease', loc='upper right') | |
# Add mean values to the barplot | |
for cont in graph.containers: | |
graph.bar_label(cont, fmt=' %.3g') | |
# Set the title for the entire figure | |
plt.suptitle('Continuous Features vs Target Distribution', fontsize=22) | |
plt.tight_layout() | |
plt.show() | |
# Remove 'target' from the categorical_features | |
categorical_features = [feature for feature in categorical_features if feature != 'target'] | |
fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(15,10)) | |
for i,col in enumerate(categorical_features): | |
# Create a cross tabulation showing the proportion of purchased and non-purchased loans for each category of the feature | |
cross_tab = pd.crosstab(index=df[col], columns=df['target']) | |
# Using the normalize=True argument gives us the index-wise proportion of the data | |
cross_tab_prop = pd.crosstab(index=df[col], columns=df['target'], normalize='index') | |
# Define colormap | |
cmp = ListedColormap(['#ff826e', 'red']) | |
# Plot stacked bar charts | |
x, y = i//4, i%4 | |
cross_tab_prop.plot(kind='bar', ax=ax[x,y], stacked=True, width=0.8, colormap=cmp, | |
legend=False, ylabel='Proportion', sharey=True) | |
# Add the proportions and counts of the individual bars to our plot | |
for idx, val in enumerate([*cross_tab.index.values]): | |
for (proportion, count, y_location) in zip(cross_tab_prop.loc[val],cross_tab.loc[val],cross_tab_prop.loc[val].cumsum()): | |
ax[x,y].text(x=idx-0.3, y=(y_location-proportion)+(proportion/2)-0.03, | |
s = f' {count}\n({np.round(proportion * 100, 1)}%)', | |
color = "black", fontsize=9, fontweight="bold") | |
# Add legend | |
ax[x,y].legend(title='target', loc=(0.7,0.9), fontsize=8, ncol=2) | |
# Set y limit | |
ax[x,y].set_ylim([0,1.12]) | |
# Rotate xticks | |
ax[x,y].set_xticklabels(ax[x,y].get_xticklabels(), rotation=0) | |
plt.suptitle('Categorical Features vs Target Stacked Barplots', fontsize=22) | |
plt.tight_layout() | |
plt.show() | |
# Check for missing values in the dataset | |
df.isnull().sum().sum() | |
continuous_features | |
Q1 = df[continuous_features].quantile(0.25) | |
Q3 = df[continuous_features].quantile(0.75) | |
IQR = Q3 - Q1 | |
outliers_count_specified = ((df[continuous_features] < (Q1 - 1.5 * IQR)) | (df[continuous_features] > (Q3 + 1.5 * IQR))).sum() | |
outliers_count_specified | |
# Implementing one-hot encoding on the specified categorical features | |
df_encoded = pd.get_dummies(df, columns=['cp', 'restecg', 'thal'], drop_first=True) | |
# Convert the rest of the categorical variables that don't need one-hot encoding to integer data type | |
features_to_convert = ['sex', 'fbs', 'exang', 'slope', 'ca', 'target'] | |
for feature in features_to_convert: | |
df_encoded[feature] = df_encoded[feature].astype(int) | |
df_encoded.dtypes | |
# Displaying the resulting DataFrame after one-hot encoding | |
df_encoded.head() | |
# Define the features (X) and the output labels (y) | |
X = df_encoded.drop('target', axis=1) | |
y = df_encoded['target'] | |
# Splitting data into train and test sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y) | |
continuous_features | |
# Adding a small constant to 'oldpeak' to make all values positive | |
X_train['oldpeak'] = X_train['oldpeak'] + 0.001 | |
X_test['oldpeak'] = X_test['oldpeak'] + 0.001 | |
# Checking the distribution of the continuous features | |
fig, ax = plt.subplots(2, 5, figsize=(15,10)) | |
# Original Distributions | |
for i, col in enumerate(continuous_features): | |
sns.histplot(X_train[col], kde=True, ax=ax[0,i], color='#ff826e').set_title(f'Original {col}') | |
# Applying Box-Cox Transformation | |
# Dictionary to store lambda values for each feature | |
lambdas = {} | |
for i, col in enumerate(continuous_features): | |
# Only apply box-cox for positive values | |
if X_train[col].min() > 0: | |
X_train[col], lambdas[col] = boxcox(X_train[col]) | |
# Applying the same lambda to test data | |
X_test[col] = boxcox(X_test[col], lmbda=lambdas[col]) | |
sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='red').set_title(f'Transformed {col}') | |
else: | |
sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='green').set_title(f'{col} (Not Transformed)') | |
fig.tight_layout() | |
plt.show() | |
X_train.head() | |
# Define the base DT model | |
dt_base = DecisionTreeClassifier(random_state=0) | |
def tune_clf_hyperparameters(clf, param_grid, X_train, y_train, scoring='recall', n_splits=3): | |
''' | |
This function optimizes the hyperparameters for a classifier by searching over a specified hyperparameter grid. | |
It uses GridSearchCV and cross-validation (StratifiedKFold) to evaluate different combinations of hyperparameters. | |
The combination with the highest recall for class 1 is selected as the default scoring metric. | |
The function returns the classifier with the optimal hyperparameters. | |
''' | |
# Create the cross-validation object using StratifiedKFold to ensure the class distribution is the same across all the folds | |
cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=0) | |
# Create the GridSearchCV object | |
clf_grid = GridSearchCV(clf, param_grid, cv=cv, scoring=scoring, n_jobs=-1) | |
# Fit the GridSearchCV object to the training data | |
clf_grid.fit(X_train, y_train) | |
# Get the best hyperparameters | |
best_hyperparameters = clf_grid.best_params_ | |
# Return best_estimator_ attribute which gives us the best model that has been fitted to the training data | |
return clf_grid.best_estimator_, best_hyperparameters | |
# Hyperparameter grid for DT | |
param_grid_dt = { | |
'criterion': ['gini', 'entropy'], | |
'max_depth': [2,3], | |
'min_samples_split': [2, 3, 4], | |
'min_samples_leaf': [1, 2] | |
} | |
# Call the function for hyperparameter tuning | |
best_dt, best_dt_hyperparams = tune_clf_hyperparameters(dt_base, param_grid_dt, X_train, y_train) | |
print('DT Optimal Hyperparameters: \n', best_dt_hyperparams) | |
# Evaluate the optimized model on the train data | |
print(classification_report(y_train, best_dt.predict(X_train))) | |
# Evaluate the optimized model on the test data | |
print(classification_report(y_test, best_dt.predict(X_test))) | |
def evaluate_model(model, X_test, y_test, model_name): | |
""" | |
Evaluates the performance of a trained model on test data using various metrics. | |
""" | |
# Make predictions | |
y_pred = model.predict(X_test) | |
# Get classification report | |
report = classification_report(y_test, y_pred, output_dict=True) | |
# Extracting metrics | |
metrics = { | |
"precision_0": report["0"]["precision"], | |
"precision_1": report["1"]["precision"], | |
"recall_0": report["0"]["recall"], | |
"recall_1": report["1"]["recall"], | |
"f1_0": report["0"]["f1-score"], | |
"f1_1": report["1"]["f1-score"], | |
"macro_avg_precision": report["macro avg"]["precision"], | |
"macro_avg_recall": report["macro avg"]["recall"], | |
"macro_avg_f1": report["macro avg"]["f1-score"], | |
"accuracy": accuracy_score(y_test, y_pred) | |
} | |
# Convert dictionary to dataframe | |
df = pd.DataFrame(metrics, index=[model_name]).round(2) | |
return df | |
dt_evaluation = evaluate_model(best_dt, X_test, y_test, 'DT') | |
dt_evaluation | |
rf_base = RandomForestClassifier(random_state=0) | |
param_grid_rf = { | |
'n_estimators': [10, 30, 50, 70, 100], | |
'criterion': ['gini', 'entropy'], | |
'max_depth': [2, 3, 4], | |
'min_samples_split': [2, 3, 4, 5], | |
'min_samples_leaf': [1, 2, 3], | |
'bootstrap': [True, False] | |
} | |
# Using the tune_clf_hyperparameters function to get the best estimator | |
best_rf, best_rf_hyperparams = tune_clf_hyperparameters(rf_base, param_grid_rf, X_train, y_train) | |
print('RF Optimal Hyperparameters: \n', best_rf_hyperparams) | |
# Evaluate the optimized model on the train data | |
print(classification_report(y_train, best_rf.predict(X_train))) | |
# Evaluate the optimized model on the test data | |
print(classification_report(y_test, best_rf.predict(X_test))) | |
rf_evaluation = evaluate_model(best_rf, X_test, y_test, 'RF') | |
rf_evaluation | |
# Define the base KNN model and set up the pipeline with scaling | |
knn_pipeline = Pipeline([ | |
('scaler', StandardScaler()), | |
('knn', KNeighborsClassifier()) | |
]) | |
# Hyperparameter grid for KNN | |
knn_param_grid = { | |
'knn__n_neighbors': list(range(1, 12)), | |
'knn__weights': ['uniform', 'distance'], | |
'knn__p': [1, 2] # 1: Manhattan distance, 2: Euclidean distance | |
} | |
# Hyperparameter tuning for KNN | |
best_knn, best_knn_hyperparams = tune_clf_hyperparameters(knn_pipeline, knn_param_grid, X_train, y_train) | |
print('KNN Optimal Hyperparameters: \n', best_knn_hyperparams) | |
# Evaluate the optimized model on the train data | |
print(classification_report(y_train, best_knn.predict(X_train))) | |
# Evaluate the optimized model on the test data | |
print(classification_report(y_test, best_knn.predict(X_test))) | |
knn_evaluation = evaluate_model(best_knn, X_test, y_test, 'KNN') | |
knn_evaluation | |
svm_pipeline = Pipeline([ | |
('scaler', StandardScaler()), | |
('svm', SVC(probability=True)) | |
]) | |
param_grid_svm = { | |
'svm__C': [0.0011, 0.005, 0.01, 0.05, 0.1, 1, 10, 20], | |
'svm__kernel': ['linear', 'rbf', 'poly'], | |
'svm__gamma': ['scale', 'auto', 0.1, 0.5, 1, 5], | |
'svm__degree': [2, 3, 4] | |
} | |
# Call the function for hyperparameter tuning | |
best_svm, best_svm_hyperparams = tune_clf_hyperparameters(svm_pipeline, param_grid_svm, X_train, y_train) | |
print('SVM Optimal Hyperparameters: \n', best_svm_hyperparams) | |
# Evaluate the optimized model on the train data | |
print(classification_report(y_train, best_svm.predict(X_train))) | |
svm_evaluation = evaluate_model(best_svm, X_test, y_test, 'SVM') | |
svm_evaluation | |
# Concatenate the dataframes | |
all_evaluations = [dt_evaluation, rf_evaluation, knn_evaluation, svm_evaluation] | |
results = pd.concat(all_evaluations) | |
# Sort by 'recall_1' | |
results = results.sort_values(by='recall_1', ascending=False).round(2) | |
results | |
# Sort values based on 'recall_1' | |
results.sort_values(by='recall_1', ascending=True, inplace=True) | |
recall_1_scores = results['recall_1'] | |
# Plot the horizontal bar chart | |
fig, ax = plt.subplots(figsize=(12, 7), dpi=70) | |
ax.barh(results.index, recall_1_scores, color='red') | |
# Annotate the values and indexes | |
for i, (value, name) in enumerate(zip(recall_1_scores, results.index)): | |
ax.text(value + 0.01, i, f"{value:.2f}", ha='left', va='center', fontweight='bold', color='red', fontsize=15) | |
ax.text(0.1, i, name, ha='left', va='center', fontweight='bold', color='white', fontsize=25) | |
# Remove yticks | |
ax.set_yticks([]) | |
# Set x-axis limit | |
ax.set_xlim([0, 1.2]) | |
# Add title and xlabel | |
plt.title("Recall for Positive Class across Models", fontweight='bold', fontsize=22) | |
plt.xlabel('Recall Value', fontsize=16) | |
plt.show() | |
!pip install gradio | |
import gradio as gr | |
import numpy as np | |
from sklearn.ensemble import RandomForestClassifier | |
# Example: Define and train a Random Forest model | |
model = RandomForestClassifier() | |
# Dummy training data (replace with your actual data) | |
X_train = np.random.rand(100, 13) # 100 samples, 12 features (one for each input) | |
y_train = np.random.randint(2, size=100) # Binary target | |
# Train the model | |
model.fit(X_train, y_train) | |
# Define the prediction function | |
def predict(*inputs): | |
try: | |
# Convert inputs to a numpy array and reshape it to match the model's expected input shape | |
input_array = np.array(inputs).reshape(1, -1) | |
prediction = model.predict(input_array) # Make a prediction | |
return str(prediction[0]) # Return the prediction (single value) as a string for display | |
except Exception as e: | |
return str(e) # Return any errors as a string (for debugging) | |
# Define the features (input fields) for Gradio | |
features = [ | |
'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', | |
'exang', 'oldpeak', 'slope', 'ca','thal' | |
] | |
# Create Gradio input components (use gr.Number for numeric inputs) | |
inputs = [gr.Number(label=feature, value=0) for feature in features] | |
# Output component (show the prediction result) | |
outputs = gr.Textbox(label="Prediction Output") | |
# Create and launch the Gradio interface | |
gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch() | |