Spaces:
Running
on
A10G
Running
on
A10G
File size: 18,177 Bytes
cb9665a 1f8beea 6cca5dc 1f8beea f97034c 81a83c8 47a88ae 81a83c8 f97034c 39c1245 1f8beea 39c1245 ccd7636 39c1245 23cbc09 1f8beea 39c1245 1f8beea 23cbc09 39c1245 1f8beea 23cbc09 39c1245 23cbc09 ccd7636 1f8beea cb9665a 1f8beea 99a36aa 1f8beea a92cf2d 23cbc09 e7fd4ee b47ddec e7fd4ee 86fa2c8 6cca5dc 9ab9acf 86fa2c8 1f8beea 23cbc09 86fa2c8 1f8beea 6cca5dc 1f8beea 2306e93 1f8beea 45481f4 2306e93 1f8beea 86fa2c8 1f8beea 15277c3 1f8beea 81a83c8 9419ae5 23cbc09 81a83c8 99a36aa 81a83c8 11af5bd 1f8beea 86fa2c8 6491cdf 1f8beea 86fa2c8 a476ea0 6491cdf 1f8beea 99a36aa 1f8beea 09d57a5 a9bcbb2 1f8beea a9bcbb2 1f8beea 09d57a5 a9bcbb2 1f8beea a9bcbb2 1f8beea 09d57a5 a9bcbb2 1f8beea a9bcbb2 09d57a5 a9bcbb2 1f8beea 99a36aa 09d57a5 99a36aa bc347f5 09d57a5 1f8beea bc347f5 1f8beea ccd7636 1f8beea d8b7eec 1f8beea 81a83c8 86fa2c8 90e7f14 1f8beea e0306f8 1f8beea a9bcbb2 1e14cf1 1f8beea 1e14cf1 67acccc 9a7d487 4f7b85a 47a88ae 99a36aa 47a88ae 99a36aa 68e2466 47a88ae 42b98a9 47a88ae ec9ed03 a9bcbb2 ec9ed03 47a88ae 1e14cf1 47a88ae 1f8beea 47a88ae 1e14cf1 47a88ae 1e14cf1 1f8beea a9bcbb2 86fa2c8 1f8beea 15277c3 86fa2c8 1f8beea 81a83c8 675f687 68e2466 81a83c8 1f8beea 81a83c8 86fa2c8 1f8beea 81a83c8 86fa2c8 81a83c8 1f8beea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import gradio as gr
import torch
import os
from utils import call
from diffusers import (
DDPMScheduler,
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from diffusers.pipelines import StableDiffusionXLPipeline
StableDiffusionXLPipeline.__call__ = call
import os
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
from trainscripts.textsliders.demotrain import train_xl
os.environ['CURL_CA_BUNDLE'] = ''
model_map = {
'Age' : 'models/age.pt',
'Chubby': 'models/chubby.pt',
'Muscular': 'models/muscular.pt',
'Surprised Look': 'models/suprised_look.pt',
'Smiling' : 'models/smiling.pt',
'Professional': 'models/professional.pt',
'Long Hair' : 'models/long_hair.pt',
'Curly Hair' : 'models/curlyhair.pt',
'Pixar Style' : 'models/pixar_style.pt',
'Sculpture Style': 'models/sculpture_style.pt',
'Clay Style': 'models/clay_style.pt',
'Repair Images': 'models/repair_slider.pt',
'Fix Hands': 'models/fix_hands.pt',
'Cluttered Room': 'models/cluttered_room.pt',
'Dark Weather': 'models/dark_weather.pt',
'Festive': 'models/festive.pt',
'Tropical Weather': 'models/tropical_weather.pt',
'Winter Weather': 'models/winter_weather.pt',
'Wavy Eyebrows': 'models/eyebrow.pt',
'Small Eyes (use scales -3, -1, 1, 3)': 'models/eyesize.pt',
}
ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## Attention - Training could be slow in this shared UI. You can alternatively duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
self.device = 'cuda'
self.weight_dtype = torch.bfloat16
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
pipe = None
del pipe
torch.cuda.empty_cache()
model_id = "stabilityai/sdxl-turbo"
self.current_model = 'SDXL Turbo'
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
self.pipe.enable_xformers_memory_efficient_attention()
self.guidance_scale = 1
self.num_inference_steps = 3
with gr.Blocks() as demo:
self.layout()
demo.queue(max_size=5).launch(share=True, max_threads=2)
def layout(self):
with gr.Row():
if SPACE_ID == ORIGINAL_SPACE_ID:
self.warning = gr.Markdown(SHARED_UI_WARNING)
with gr.Row():
with gr.Tab("Test") as inference_column:
with gr.Row():
self.explain_infr = gr.Markdown(value='This is a demo of [Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models](https://sliders.baulab.info/). To try out a model that can control a particular concept, select a model and enter any prompt, choose a seed, and finally choose the SDEdit timestep for structural preservation. Higher SDEdit timesteps results in more structural change. For example, if you select the model "Surprised Look" you can generate images for the prompt "A picture of a person, realistic, 8k" and compare the slider effect to the image generated by original model. We have also provided several other pre-fine-tuned models like "repair" sliders to repair flaws in SDXL generated images (Check out the "Pretrained Sliders" drop-down). You can also train and run your own custom sliders. Check out the "train" section for custom concept slider training. <b>Current Inference is running on SDXL Turbo!</b>')
with gr.Row():
with gr.Column(scale=1):
self.prompt_input_infr = gr.Text(
placeholder="photo of a person, with bokeh street background, realistic, 8k",
label="Prompt",
info="Prompt to generate",
value="photo of a person, with bokeh street background, realistic, 8k"
)
with gr.Row():
self.model_dropdown = gr.Dropdown(
label="Pretrained Sliders",
choices= list(model_map.keys()),
value='Age',
interactive=True
)
self.seed_infr = gr.Number(
label="Seed",
value=42753
)
self.slider_scale_infr = gr.Slider(
-4,
4,
label="Slider Scale",
value=3,
info="Larger slider scale result in stronger edit"
)
self.start_noise_infr = gr.Slider(
600, 900,
value=750,
label="SDEdit Timestep",
info="Choose smaller values for more structural preservation"
)
self.model_type = gr.Dropdown(
label="Model",
choices= ['SDXL Turbo', 'SDXL'],
value='SDXL Turbo',
interactive=True
)
with gr.Column(scale=2):
self.infr_button = gr.Button(
value="Generate",
interactive=True
)
with gr.Row():
self.image_orig = gr.Image(
label="Original SD",
interactive=False,
type='pil',
)
self.image_new = gr.Image(
label=f"Concept Slider",
interactive=False,
type='pil',
)
with gr.Tab("Train") as training_column:
with gr.Row():
self.explain_train= gr.Markdown(value='In this part you can train a textual concept sliders for Stable Diffusion XL. Enter a target concept you wish to make an edit on (eg. person). Next, enter a enhance prompt of the attribute you wish to edit (for controlling age of a person, enter "person, old"). Then, type the supress prompt of the attribute (for our example, enter "person, young"). Then press "train" button. With default settings, it takes about 25 minutes to train a slider; then you can try inference above or download the weights. For faster training, please duplicate the repo and train with A100 or larger GPU. Code and details are at [github link](https://github.com/rohitgandikota/sliders).')
with gr.Row():
with gr.Column(scale=3):
self.target_concept = gr.Text(
placeholder="Enter target concept to make edit on ...",
label="Prompt of concept on which edit is made",
info="Prompt corresponding to concept to edit (eg: 'person')",
value = ''
)
self.positive_prompt = gr.Text(
placeholder="Enter the enhance prompt for the edit ...",
label="Prompt to enhance",
info="Prompt corresponding to concept to enhance (eg: 'person, old')",
value = ''
)
self.negative_prompt = gr.Text(
placeholder="Enter the suppress prompt for the edit ...",
label="Prompt to suppress",
info="Prompt corresponding to concept to supress (eg: 'person, young')",
value = ''
)
self.attributes_input = gr.Text(
placeholder="Enter the concepts to preserve (comma seperated). Leave empty if not required ...",
label="Concepts to Preserve",
info="Comma seperated concepts to preserve/disentangle (eg: 'male, female')",
value = ''
)
self.is_person = gr.Checkbox(
label="Person",
info="Are you training a slider for person?")
self.rank = gr.Number(
value=4,
label="Rank of the Slider",
info='Slider Rank to train'
)
choices = ['xattn', 'noxattn']
self.train_method_input = gr.Dropdown(
choices=choices,
value='xattn',
label='Train Method',
info='Method of training. If [* xattn *] - loras will be on cross attns only. [* noxattn *] (official implementation) - all layers except cross attn',
interactive=True
)
self.iterations_input = gr.Number(
value=500,
precision=0,
label="Iterations",
info='iterations used to train - maximum of 1000'
)
self.lr_input = gr.Number(
value=2e-4,
label="Learning Rate",
info='Learning rate used to train'
)
with gr.Column(scale=1):
self.train_status = gr.Button(value='', variant='primary', interactive=False)
self.train_button = gr.Button(
value="Train",
)
self.download = gr.Files()
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.seed_infr,
self.start_noise_infr,
self.slider_scale_infr,
self.model_dropdown,
self.model_type
],
outputs=[
self.image_new,
self.image_orig
]
)
self.train_button.click(self.train, inputs = [
self.target_concept,
self.positive_prompt,
self.negative_prompt,
self.rank,
self.iterations_input,
self.lr_input,
self.attributes_input,
self.is_person,
self.train_method_input
],
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
)
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)):
iterations_input = min(int(iterations_input),1000)
if attributes_input == '':
attributes_input = None
print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person)
randn = torch.randint(1, 10000000, (1,)).item()
save_name = f"{randn}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:20]}"
save_name += f'_alpha-{1}'
save_name += f'_{train_method_input}'
save_name += f'_rank_{int(rank)}.pt'
# if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40:
# return [gr.update(interactive=True, value='Train'), gr.update(value='GPU Memory is not enough for training... Please upgrade to GPU atleast 40GB or clone the repo to your local machine.'), None, gr.update()]
if self.training:
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
attributes = attributes_input
if is_person:
attributes = 'white, black, asian, hispanic, indian, male, female'
self.training = True
train_xl(target=target_concept, positive=positive_prompt, negative=negative_prompt, lr=lr_input, iterations=iterations_input, config_file='trainscripts/textsliders/data/config-xl.yaml', rank=int(rank), train_method=train_method_input, device=self.device, attributes=attributes, save_name=save_name)
self.training = False
torch.cuda.empty_cache()
model_map[save_name.replace('.pt','')] = f'models/{save_name}'
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))]
def inference(self, prompt, seed, start_noise, scale, model_name, model, pbar = gr.Progress(track_tqdm=True)):
seed = seed or 42753
if self.current_model != model:
if model=='SDXL Turbo':
model_id = "stabilityai/sdxl-turbo"
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
self.pipe.enable_xformers_memory_efficient_attention()
self.guidance_scale = 1
self.num_inference_steps = 3
self.current_model = 'SDXL Turbo'
else:
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
self.pipe.enable_xformers_memory_efficient_attention()
self.guidance_scale = 7.5
self.num_inference_steps = 20
self.current_model = 'SDXL'
generator = torch.manual_seed(seed)
model_path = model_map[model_name]
unet = self.pipe.unet
network_type = "c3lier"
if 'full' in model_path:
train_method = 'full'
elif 'noxattn' in model_path:
train_method = 'noxattn'
elif 'xattn' in model_path:
train_method = 'xattn'
network_type = 'lierla'
else:
train_method = 'noxattn'
modules = DEFAULT_TARGET_REPLACE
if network_type == "c3lier":
modules += UNET_TARGET_REPLACE_MODULE_CONV
name = os.path.basename(model_path)
rank = 4
alpha = 1
if 'rank' in model_path:
rank = int(float(model_path.split('_')[-1].replace('.pt','')))
if 'alpha1' in model_path:
alpha = 1.0
network = LoRANetwork(
unet,
rank=rank,
multiplier=1.0,
alpha=alpha,
train_method=train_method,
).to(self.device, dtype=self.weight_dtype)
network.load_state_dict(torch.load(model_path))
generator = torch.manual_seed(seed)
edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=network, start_noise=int(start_noise), scale=float(scale), unet=unet, guidance_scale=self.guidance_scale).images[0]
generator = torch.manual_seed(seed)
original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=network, start_noise=start_noise, scale=0, unet=unet, guidance_scale=self.guidance_scale).images[0]
del unet, network
unet = None
network = None
torch.cuda.empty_cache()
return edited_image, original_image
demo = Demo()
|