Spaces:
Sleeping
Sleeping
File size: 6,724 Bytes
96d27f3 c8feaef 96d27f3 1d74619 aa6b518 96d27f3 ea88a50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
import transformers
from transformers import AutoTokenizer, AutoModel , AutoModelForCausalLM
from transformers import AutoModelForSeq2SeqLM, GenerationConfig, AutoConfig ,BartForConditionalGeneration
import pickle
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize
import re
import string
from nltk.corpus import stopwords
from tashaphyne.stemming import ArabicLightStemmer
import pyarabic.araby as araby
from sklearn.feature_extraction.text import TfidfVectorizer
import streamlit as st
nltk.download('punkt')
with open('tfidf_vectorizer.pkl', 'rb') as f:
vectorizer = pickle.load(f)
with open('svm_model.pkl', 'rb') as f:
model_classify = pickle.load(f)
model = AutoModelForSeq2SeqLM.from_pretrained("bushra1dajam/Wajeez_model")
tokenizer = AutoTokenizer.from_pretrained('bushra1dajam/Wajeez_model',use_fast=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def summarize_text(text):
inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
summary_ids = model.generate(
inputs["input_ids"],
max_length=512,
num_beams=8,
#no_repeat_ngram_size=4, # Prevents larger n-gram repetitions
early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def remove_numbers(text):
cleaned_text = re.sub(r'\d+', '', text)
return cleaned_text
def Removing_non_arabic(text):
text =re.sub(r'[^0-9\u0600-\u06ff\u0750-\u077f\ufb50-\ufbc1\ufbd3-\ufd3f\ufd50-\ufd8f\ufd50-\ufd8f\ufe70-\ufefc\uFDF0-\uFDFD.0-9ู -ูฉ]+', ' ',text)
return text
nltk.download('stopwords')
ara_punctuations = '''`รทรุ<>_()*&^%][ูุ/:"ุ.,'{}~ยฆ+|!โโฆโโู''' + string.punctuation
stop_words = stopwords.words()
def remove_punctuations(text):
translator = str.maketrans('', '', ara_punctuations)
text = text.translate(translator)
return text
def remove_tashkeel(text):
text = text.strip()
text = re.sub("[ุฅุฃูฑุขุง]", "ุง", text)
text = re.sub("ู", "ู", text)
text = re.sub("ุค", "ุก", text)
text = re.sub("ุฆ", "ุก", text)
text = re.sub("ุฉ", "ู", text)
noise = re.compile(""" ู | # Tashdid
ู | # Fatha
ู | # Tanwin Fath
ู | # Damma
ู | # Tanwin Damm
ู | # Kasra
ู | # Tanwin Kasr
ู | # Sukun
ู # Tatwil/Kashida
""", re.VERBOSE)
text = re.sub(noise, '', text)
text = re.sub(r'(.)\1+', r"\1\1", text)
return araby.strip_tashkeel(text)
arabic_stopwords = stopwords.words("arabic")
def remove_stop_words(text):
Text=[i for i in str(text).split() if i not in arabic_stopwords]
return " ".join(Text)
def tokenize_text(text):
tokens = word_tokenize(text)
return tokens
def Arabic_Light_Stemmer(text):
Arabic_Stemmer = ArabicLightStemmer()
text=[Arabic_Stemmer.light_stem(y) for y in text]
return " " .join(text)
def preprocess_text(text):
text = remove_numbers(text)
text = Removing_non_arabic(text)
text = remove_punctuations(text)
text = remove_stop_words(text)
text = remove_tashkeel(text)
text = tokenize_text(text)
text = Arabic_Light_Stemmer(text)
return text
class_mapping = {
0: "ุฌูุงุฆูุฉ",
1: "ุงุญูุงู ุดุฎุตูุฉ",
2: "ุนุงู
ุฉ"
}
st.markdown("""
<style>
body {
background-color: #f0f4f8;
direction: rtl;
font-family: 'Arial', sans-serif;
}
.logo-container {
display: flex;
justify-content: center;
align-items: center;
margin-bottom: 20px;
}
.stTextArea textarea, .stText {
text-align: right;
}
.stButton>button {
background-color: #3498db;
color: white;
font-family: 'Arial', sans-serif;
}
.stButton>button:hover {
background-color: #2980b9;
}
h1, h2, h3, h4, h5, h6, .stSubheader {
text-align: right;
}
.home-title {
text-align: center;
font-size: 40px;
color: #3498db;
}
.home-description {
text-align: center;
font-size: 20px;
color: #2c3e50;
}
.larger-text {
font-size: 24px;
color: #2c3e50;
}
</style>
""", unsafe_allow_html=True)
# Function for the Home Page
def home_page():
st.markdown('<h1 class="home-title">ู
ุฑุญุจุง ุจู ูู ุชุทุจูู ูุฌูุฒ</h1>', unsafe_allow_html=True)
st.markdown('<p class="home-description">ุชุทุจูู ูุฌูุฒ ููุฏู
ูู ุฎุฏู
ุฉ ุงูุชุตููู ูุงูู
ูุฎุต ูููุตูุต ุงููุงููููุฉ. ูู
ููู ุฅุฏุฎุงู ุงููุตูุต ููุง ููุญุตูู ุนูู ุชุตููู ุฏููู ูู
ูุฎุต ุดุงู
ู.</p>', unsafe_allow_html=True)
def main_page():
st.title("ุตูู ููุฎุต")
# Input text area
input_text = st.text_area("ุงุฏุฎู ุงููุต", "")
if st.button('ุตูู ููุฎุต'):
if input_text:
prepro = preprocess_text(input_text)
features = vectorizer.transform([prepro])
prediction = model_classify.predict(features)
classifiy = prediction[0]
classifiy_class = class_mapping.get(classifiy, "ูู
ูุชู
ุงูุชุนุฑู")
summarized_text = summarize_text(input_text)
st.markdown('<p class="larger-text">ุชุตููู ุงููุถูุฉ :</p>', unsafe_allow_html=True)
st.write(classifiy_class)
st.markdown('<p class="larger-text">ู
ูุฎุต ูููุถูุฉ :</p>', unsafe_allow_html=True)
st.write(summarized_text)
def app():
# Sidebar navigation with logo inside the sidebar
with st.sidebar:
st.markdown('<div class="logo-container">', unsafe_allow_html=True)
st.image("logo.png", width=200) # Make sure you have the logo file in your app folder
st.markdown('</div>', unsafe_allow_html=True)
st.header("ุชุทููู ูุฌูุฒ")
page_selection = st.selectbox("ุงุฎุชุฑ ุตูุญุฉ", ["ุงูุฑุฆูุณูุฉ", " ุตูู ููุฎุต !"])
if page_selection == "ุงูุฑุฆูุณูุฉ":
home_page()
elif page_selection == " ุตูู ููุฎุต !":
main_page()
if __name__ == "__main__":
app() |