Spaces:
Sleeping
Sleeping
File size: 8,720 Bytes
88d9c40 e6d141a 2b64754 f3c8907 2b64754 a328dd2 f3c8907 5e571ea 299e22b 4ddb8df dd2079c 7fbe657 dd2079c f0f10e0 dd2079c 7fbe657 dd2079c 7fbe657 dd2079c 299e22b 5e571ea 299e22b 3ef94a5 5e571ea 5a3f658 37a83d8 2b64754 f3c8907 2b64754 3d8a92f 10a30e6 2b64754 f3c8907 2b64754 3d8a92f f3c8907 f921425 dce9e22 f921425 37a83d8 f921425 299e22b 3bf413d dce9e22 e6d141a 37a83d8 88d9c40 4ddb8df b0ec887 2655ad8 f921425 2655ad8 b0ec887 299e22b 2655ad8 dd2079c e6d141a 7fbe657 b0ec887 37a83d8 aa2bef6 7fbe657 7cb1ba7 60d6368 88d9c40 dce9e22 7fbe657 83d92d0 77dac02 7fbe657 88d9c40 dce9e22 f921425 dce9e22 f921425 7fbe657 88d9c40 f921425 e6d141a dce9e22 e6d141a 4ddb8df f921425 e6d141a 4ddb8df 4e8ec3f f921425 4ddb8df e6d141a 4ddb8df dce9e22 f921425 4e8ec3f 2655ad8 f921425 e6d141a f921425 7fbe657 4e8ec3f 2655ad8 f921425 e6d141a f921425 7fbe657 4e8ec3f a2d5a45 88d9c40 b0ec887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import json
import os
import random
import uuid
from datetime import datetime
from pathlib import Path
from typing import Callable, List, Tuple
import gradio as gr
from huggingface_hub import (
CommitScheduler,
InferenceClient,
get_token,
hf_hub_download,
login,
)
from openai import OpenAI
from prompts import basic_prompt, detailed_genre_description_prompt, very_basic_prompt
from theme import TufteInspired
HF_TOKEN = os.getenv("HF_TOKEN")
# Define available models
MODELS = [
"meta-llama/Meta-Llama-3-70B-Instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
]
# Set up dataset storage
dataset_folder = Path("dataset")
dataset_folder.mkdir(exist_ok=True)
# Function to get the latest dataset file
def get_latest_dataset_file():
files = list(dataset_folder.glob("data_*.jsonl"))
return max(files, key=os.path.getctime) if files else None
# Check for existing dataset and create or append to it
if latest_file := get_latest_dataset_file():
dataset_file = latest_file
print(f"Appending to existing dataset file: {dataset_file}")
else:
dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl"
print(f"Creating new dataset file: {dataset_file}")
# Set up CommitScheduler for dataset uploads
repo_id = (
"davanstrien/summer-reading-preference" # Replace with your desired dataset repo
)
scheduler = CommitScheduler(
repo_id=repo_id,
repo_type="dataset",
folder_path=dataset_folder,
path_in_repo="data",
every=5, # Upload every 5 minutes
)
# Function to download existing dataset files
def download_existing_dataset():
try:
files = hf_hub_download(
repo_id=repo_id,
filename="data",
repo_type="dataset",
)
for file in Path(files).glob("*.jsonl"):
dest_file = dataset_folder / file.name
if not dest_file.exists():
dest_file.write_bytes(file.read_bytes())
print(f"Downloaded existing dataset file: {dest_file}")
except Exception as e:
print(f"Error downloading existing dataset: {e}")
# Download existing dataset files at startup
download_existing_dataset()
def get_random_model():
global CHOSEN_MODEL
model = random.choice(MODELS)
CHOSEN_MODEL = model
return model
def create_client(model_id):
return OpenAI(
base_url=f"https://api-inference.huggingface.co/models/{model_id}/v1",
api_key=HF_TOKEN,
)
# client = OpenAI(
# base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
# api_key=HF_TOKEN
# )
def weighted_random_choice(choices: List[Tuple[Callable, float]]) -> Callable:
total = sum(weight for _, weight in choices)
r = random.uniform(0, total)
upto = 0
for choice, weight in choices:
if upto + weight >= r:
return choice
upto += weight
assert False, "Shouldn't get here"
def generate_prompt() -> str:
prompt_choices = [
(detailed_genre_description_prompt, 0.5),
(basic_prompt, 0.2),
(very_basic_prompt, 0.3),
]
selected_prompt_func = weighted_random_choice(prompt_choices)
return selected_prompt_func()
def get_and_store_prompt():
prompt = generate_prompt()
print(prompt) # Keep this for debugging
return prompt
def generate_blurb(prompt):
model_id = get_random_model()
client = create_client(model_id)
max_tokens = random.randint(500, 1000)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": prompt},
],
stream=True,
max_tokens=max_tokens,
)
full_text = ""
for message in chat_completion:
full_text += message.choices[0].delta.content
yield full_text
# Function to log blurb and vote
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
log_entry = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"blurb": blurb,
"vote": vote,
"user_id": user_id,
"model": CHOSEN_MODEL,
}
with scheduler.lock:
with dataset_file.open("a") as f:
f.write(json.dumps(log_entry) + "\n")
gr.Info("Thank you for voting!")
return f"Logged: {vote} by user {user_id}", gr.Row.update(visible=False)
short_description = """Vote on book blurbs generated by large language models. Would you read the book the LLM generated? <br> Every five minutes, the dataset of votes created in this will be uploaded to the <a href="https://huggingface.co/datasets/davanstrien/summer-reading-preference">davanstrien/summer-reading-preference</a> dataset.
"""
full_description = """
Large Language Models are already strong assistants for technical tasks like coding. Increasingly they are also being used to help with tasks like copywriting. The jury is out on whether the texts produced by language models in these applications is very appealing; "let's delve into" is a common example of the clunky cliche ridden text that LLMs often produce. <br>
However, there is also growing interest in using LLMs to help with more creative tasks. Outside of larger companies, there is a growing community of people fine-tuning LLMs for all sorts of creative tasks. Some writers want to use LLMs not as a replacement but as a companion in their writing process. <br>
One of the requirements for building models which are better able to generate responses people like is having preference data. Preference datasets come in many forms but essentially boil to a dataset which contains some kind of signal for whether people like or dislike some LLM generated text. <br>
This Space is a small experiment to see if we can generate preference data for LLM generated book blurbs. Whilst writing a blurb is very different from writing a whole book, it could be a neat experiment to see whether we can improve the ability of LLMs to generate book blurbs that people like. <br>
"""
# Create custom theme
tufte_theme = TufteInspired()
with gr.Blocks(theme=tufte_theme) as demo:
gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
gr.Markdown(f"""<p style='text-align: center;'>{short_description}</p>""")
with gr.Accordion("More information", open=False):
gr.Markdown(full_description)
with gr.Accordion("View the data generated so far...", open=False):
gr.Markdown("Below is the progress of the dataset so far!")
gr.HTML("""<iframe
src="https://huggingface.co/datasets/davanstrien/summer-reading-preference/embed/viewer"
frameborder="0"
width="100%"
height="560px"
></iframe>""")
with gr.Row():
login_btn = gr.LoginButton(size="sm")
gr.Markdown(
"Login with your Hugging Face account to assign your Hub username to your votes. This will allow you to extract your preferences from the dataset generated by this Space! If you don't have a Hugging Face account, you can still vote but your votes will be anonymous."
)
with gr.Row():
generate_btn = gr.Button("Create a book", variant="primary")
prompt_state = gr.State()
blurb_output = gr.Markdown(label="Book blurb")
with gr.Row(visible=True) as voting_row:
upvote_btn = gr.Button("π would read")
downvote_btn = gr.Button("π wouldn't read")
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)
def generate_and_show(prompt):
return "Generating...", gr.Row.update(visible=False)
def show_voting_buttons(blurb):
return blurb, gr.Row.update(visible=True)
generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
generate_and_show, inputs=prompt_state, outputs=[blurb_output, voting_row]
).then(generate_blurb, inputs=prompt_state, outputs=blurb_output).then(
show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
)
upvote_btn.click(
log_blurb_and_vote,
inputs=[
prompt_state,
blurb_output,
gr.Textbox(value="upvote", visible=False),
login_btn,
],
outputs=[vote_output, voting_row],
)
downvote_btn.click(
log_blurb_and_vote,
inputs=[
prompt_state,
blurb_output,
gr.Textbox(value="downvote", visible=False),
login_btn,
],
outputs=[vote_output, voting_row],
)
if __name__ == "__main__":
demo.launch(debug=True)
|