File size: 6,467 Bytes
e6d141a
88d9c40
b2e385a
 
e6d141a
dd2079c
e6d141a
 
 
 
 
dd2079c
a328dd2
2655ad8
e6d141a
299e22b
 
 
 
 
 
 
dd2079c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f10e0
 
 
dd2079c
 
 
 
 
56a9aaf
dd2079c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299e22b
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef94a5
e6d141a
 
 
5a3f658
 
37a83d8
dce9e22
 
 
 
 
 
37a83d8
f921425
dce9e22
f921425
 
 
37a83d8
f921425
299e22b
 
f921425
dce9e22
 
 
 
 
 
 
 
 
 
 
e6d141a
37a83d8
88d9c40
98127fe
 
 
 
 
 
 
 
 
 
 
b0ec887
2655ad8
 
f921425
2655ad8
 
b0ec887
299e22b
2655ad8
dd2079c
 
 
e6d141a
98127fe
b0ec887
37a83d8
88d9c40
 
 
 
 
dce9e22
4e8ec3f
dce9e22
dd2079c
4e8ec3f
b0ec887
e6d141a
 
 
88d9c40
dce9e22
f921425
 
dce9e22
98127fe
f921425
dce9e22
88d9c40
 
f921425
e6d141a
dce9e22
e6d141a
98127fe
f921425
e6d141a
98127fe
4e8ec3f
f921425
98127fe
 
 
e6d141a
98127fe
 
 
dce9e22
f921425
4e8ec3f
2655ad8
f921425
 
 
 
e6d141a
98127fe
f921425
98127fe
4e8ec3f
 
2655ad8
f921425
 
 
 
e6d141a
98127fe
f921425
98127fe
4e8ec3f
88d9c40
 
b0ec887
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import gradio as gr
import json
from datetime import datetime
from theme import TufteInspired
import uuid
from huggingface_hub import InferenceClient, CommitScheduler, hf_hub_download
from openai import OpenAI
from huggingface_hub import get_token, login
from prompts import detailed_genre_description_prompt, basic_prompt
import random
import os
from pathlib import Path

# Ensure you're logged in to Hugging Face
login(get_token())
# Define available models
MODELS = [
    "meta-llama/Meta-Llama-3-70B-Instruct",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
]

# Set up dataset storage
dataset_folder = Path("dataset")
dataset_folder.mkdir(exist_ok=True)


# Function to get the latest dataset file
def get_latest_dataset_file():
    files = list(dataset_folder.glob("data_*.jsonl"))
    return max(files, key=os.path.getctime) if files else None


# Check for existing dataset and create or append to it
latest_file = get_latest_dataset_file()
if latest_file:
    dataset_file = latest_file
    print(f"Appending to existing dataset file: {dataset_file}")
else:
    dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl"
    print(f"Creating new dataset file: {dataset_file}")

# Set up CommitScheduler for dataset uploads
repo_id = (
    "davanstrien/summer-reading-preference"  # Replace with your desired dataset repo
)
scheduler = CommitScheduler(
    repo_id=repo_id,
    repo_type="dataset",
    folder_path=dataset_folder,
    path_in_repo="data",
    every=1,  # Upload every 5 minutes
)


# Function to download existing dataset files
def download_existing_dataset():
    try:
        files = hf_hub_download(
            repo_id=repo_id, filename="data", repo_type="dataset", recursive=True
        )
        for file in Path(files).glob("*.jsonl"):
            dest_file = dataset_folder / file.name
            if not dest_file.exists():
                dest_file.write_bytes(file.read_bytes())
                print(f"Downloaded existing dataset file: {dest_file}")
    except Exception as e:
        print(f"Error downloading existing dataset: {e}")


# Download existing dataset files at startup
download_existing_dataset()


def get_random_model():
    global CHOSEN_MODEL
    model = random.choice(MODELS)
    CHOSEN_MODEL = model
    return model


def create_client(model_id):
    return OpenAI(
        base_url=f"https://api-inference.huggingface.co/models/{model_id}/v1",
        api_key=get_token(),
    )


client = OpenAI(
    base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
    api_key=get_token(),
)


def generate_prompt():
    if random.choice([True, False]):
        return detailed_genre_description_prompt()
    else:
        return basic_prompt()


def get_and_store_prompt():
    prompt = generate_prompt()
    print(prompt)  # Keep this for debugging
    return prompt


def generate_blurb(prompt):
    model_id = get_random_model()
    client = create_client(model_id)
    max_tokens = random.randint(100, 1000)
    chat_completion = client.chat.completions.create(
        model="tgi",
        messages=[
            {"role": "user", "content": prompt},
        ],
        stream=True,
        max_tokens=max_tokens,
    )
    full_text = ""
    for message in chat_completion:
        full_text += message.choices[0].delta.content
        yield full_text


# Modified function to log blurb and vote
def log_blurb_and_vote(
    prompt, blurb, vote, user_info: gr.OAuthProfile | None, has_voted, *args
):
    if has_voted:
        return (
            "You've already voted on this response.",
            has_voted,
            gr.Row.update(visible=True),
        )

    user_id = user_info.username if user_info is not None else str(uuid.uuid4())
    log_entry = {
        "timestamp": datetime.now().isoformat(),
        "prompt": prompt,
        "blurb": blurb,
        "vote": vote,
        "user_id": user_id,
        "model": CHOSEN_MODEL,
    }
    with scheduler.lock:
        with dataset_file.open("a") as f:
            f.write(json.dumps(log_entry) + "\n")
    gr.Info("Thank you for voting!")
    return f"Logged: {vote} by user {user_id}", True, gr.Row.update(visible=False)


# Create custom theme
tufte_theme = TufteInspired()

# Create Gradio interface
with gr.Blocks(theme=tufte_theme) as demo:
    gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
    gr.Markdown(
        """<p style='text-align: center;'>Looking for your next summer read? 
    Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://huggingface.co/datasets/your-username/your-dataset-repo">this</a> Hugging Face dataset</p>"""
    )

    # Add the login button
    login_btn = gr.LoginButton()

    with gr.Row():
        generate_btn = gr.Button("Create a book", variant="primary")

    prompt_state = gr.State()
    blurb_output = gr.Markdown(label="Book blurb")
    has_voted = gr.State(False)

    with gr.Row(visible=False) as voting_row:
        upvote_btn = gr.Button("πŸ‘ would read")
        downvote_btn = gr.Button("πŸ‘Ž wouldn't read")

    vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)

    def generate_and_show(prompt):
        return "Generating...", gr.Row.update(visible=False), False

    def show_voting_buttons(blurb):
        return blurb, gr.Row.update(visible=True), False

    generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
        generate_and_show,
        inputs=prompt_state,
        outputs=[blurb_output, voting_row, has_voted],
    ).then(generate_blurb, inputs=prompt_state, outputs=blurb_output).then(
        show_voting_buttons,
        inputs=blurb_output,
        outputs=[blurb_output, voting_row, has_voted],
    )

    upvote_btn.click(
        log_blurb_and_vote,
        inputs=[
            prompt_state,
            blurb_output,
            gr.Textbox(value="upvote", visible=False),
            login_btn,
            has_voted,
        ],
        outputs=[vote_output, has_voted, voting_row],
    )
    downvote_btn.click(
        log_blurb_and_vote,
        inputs=[
            prompt_state,
            blurb_output,
            gr.Textbox(value="downvote", visible=False),
            login_btn,
            has_voted,
        ],
        outputs=[vote_output, has_voted, voting_row],
    )

if __name__ == "__main__":
    demo.launch(debug=True)