Spaces:
Sleeping
Sleeping
File size: 3,768 Bytes
e6d141a 88d9c40 b2e385a e6d141a a328dd2 2655ad8 e6d141a 3ef94a5 e6d141a 5a3f658 37a83d8 dce9e22 37a83d8 f921425 dce9e22 f921425 37a83d8 f921425 dce9e22 e6d141a 37a83d8 88d9c40 e6d141a b0ec887 2655ad8 f921425 2655ad8 b0ec887 2655ad8 e6d141a b0ec887 37a83d8 88d9c40 dce9e22 4e8ec3f dce9e22 e6d141a 4e8ec3f b0ec887 e6d141a 88d9c40 dce9e22 f921425 dce9e22 f921425 dce9e22 88d9c40 f921425 e6d141a dce9e22 e6d141a f921425 e6d141a 4e8ec3f f921425 e6d141a dce9e22 f921425 4e8ec3f 2655ad8 f921425 e6d141a f921425 e6d141a 4e8ec3f 2655ad8 f921425 e6d141a f921425 e6d141a 4e8ec3f 88d9c40 b0ec887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
import json
from datetime import datetime
from theme import TufteInspired
import uuid
from huggingface_hub import InferenceClient
from openai import OpenAI
from huggingface_hub import get_token, login
from prompts import detailed_genre_description_prompt, basic_prompt
import random
import os
# Ensure you're logged in to Hugging Face
login(get_token())
client = OpenAI(
base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
api_key=get_token(),
)
def generate_prompt():
if random.choice([True, False]):
return detailed_genre_description_prompt()
else:
return basic_prompt()
def get_and_store_prompt():
prompt = generate_prompt()
print(prompt) # Keep this for debugging
return prompt
def generate_blurb(prompt):
max_tokens = random.randint(100, 1000)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": prompt},
],
stream=True,
max_tokens=max_tokens,
)
full_text = ""
for message in chat_completion:
full_text += message.choices[0].delta.content
yield full_text
# Function to log blurb and vote
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
log_entry = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"blurb": blurb,
"vote": vote,
"user_id": user_id,
}
with open("blurb_log.jsonl", "a") as f:
f.write(json.dumps(log_entry) + "\n")
gr.Info("Thank you for voting!")
return f"Logged: {vote} by user {user_id}"
# Create custom theme
tufte_theme = TufteInspired()
# Create Gradio interface
with gr.Blocks(theme=tufte_theme) as demo:
gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
gr.Markdown(
"""<p style='text-align: center;'>Looking for your next summer read?
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://example.com">this</a> Hugging Face dataset</p>"""
)
# Add the login button
login_btn = gr.LoginButton()
with gr.Row():
generate_btn = gr.Button("Create a book", variant="primary")
prompt_state = gr.State()
blurb_output = gr.Markdown(label="Book blurb")
with gr.Row(visible=False) as voting_row:
upvote_btn = gr.Button("π would read")
downvote_btn = gr.Button("π wouldn't read")
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)
def generate_and_show(prompt):
return gr.Markdown.update(value="Generating..."), gr.Row(visible=False)
def show_voting_buttons(blurb):
return blurb, gr.Row(visible=True)
generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
generate_and_show, inputs=prompt_state, outputs=[blurb_output, voting_row]
).then(generate_blurb, inputs=prompt_state, outputs=blurb_output).then(
show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
)
upvote_btn.click(
log_blurb_and_vote,
inputs=[
prompt_state,
blurb_output,
gr.Textbox(value="upvote", visible=False),
login_btn,
],
outputs=vote_output,
)
downvote_btn.click(
log_blurb_and_vote,
inputs=[
prompt_state,
blurb_output,
gr.Textbox(value="downvote", visible=False),
login_btn,
],
outputs=vote_output,
)
if __name__ == "__main__":
demo.launch(debug=True)
|