File size: 3,768 Bytes
e6d141a
88d9c40
b2e385a
 
e6d141a
 
 
 
 
 
 
a328dd2
2655ad8
e6d141a
3ef94a5
e6d141a
 
 
5a3f658
 
37a83d8
dce9e22
 
 
 
 
 
37a83d8
f921425
dce9e22
f921425
 
 
37a83d8
f921425
 
dce9e22
 
 
 
 
 
 
 
 
 
 
e6d141a
37a83d8
88d9c40
e6d141a
 
b0ec887
2655ad8
 
f921425
2655ad8
 
b0ec887
2655ad8
e6d141a
 
 
 
b0ec887
37a83d8
88d9c40
 
 
 
 
dce9e22
4e8ec3f
dce9e22
e6d141a
4e8ec3f
b0ec887
e6d141a
 
 
88d9c40
dce9e22
f921425
 
dce9e22
f921425
dce9e22
88d9c40
 
f921425
e6d141a
dce9e22
e6d141a
 
f921425
e6d141a
 
4e8ec3f
f921425
e6d141a
 
 
dce9e22
f921425
4e8ec3f
2655ad8
f921425
 
 
 
e6d141a
f921425
e6d141a
4e8ec3f
 
2655ad8
f921425
 
 
 
e6d141a
f921425
e6d141a
4e8ec3f
88d9c40
 
b0ec887
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import gradio as gr
import json
from datetime import datetime
from theme import TufteInspired
import uuid
from huggingface_hub import InferenceClient
from openai import OpenAI
from huggingface_hub import get_token, login
from prompts import detailed_genre_description_prompt, basic_prompt
import random
import os

# Ensure you're logged in to Hugging Face
login(get_token())

client = OpenAI(
    base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
    api_key=get_token(),
)


def generate_prompt():
    if random.choice([True, False]):
        return detailed_genre_description_prompt()
    else:
        return basic_prompt()


def get_and_store_prompt():
    prompt = generate_prompt()
    print(prompt)  # Keep this for debugging
    return prompt


def generate_blurb(prompt):
    max_tokens = random.randint(100, 1000)
    chat_completion = client.chat.completions.create(
        model="tgi",
        messages=[
            {"role": "user", "content": prompt},
        ],
        stream=True,
        max_tokens=max_tokens,
    )
    full_text = ""
    for message in chat_completion:
        full_text += message.choices[0].delta.content
        yield full_text


# Function to log blurb and vote
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
    user_id = user_info.username if user_info is not None else str(uuid.uuid4())
    log_entry = {
        "timestamp": datetime.now().isoformat(),
        "prompt": prompt,
        "blurb": blurb,
        "vote": vote,
        "user_id": user_id,
    }
    with open("blurb_log.jsonl", "a") as f:
        f.write(json.dumps(log_entry) + "\n")
    gr.Info("Thank you for voting!")
    return f"Logged: {vote} by user {user_id}"


# Create custom theme
tufte_theme = TufteInspired()

# Create Gradio interface
with gr.Blocks(theme=tufte_theme) as demo:
    gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
    gr.Markdown(
        """<p style='text-align: center;'>Looking for your next summer read? 
    Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://example.com">this</a> Hugging Face dataset</p>"""
    )

    # Add the login button
    login_btn = gr.LoginButton()

    with gr.Row():
        generate_btn = gr.Button("Create a book", variant="primary")

    prompt_state = gr.State()
    blurb_output = gr.Markdown(label="Book blurb")

    with gr.Row(visible=False) as voting_row:
        upvote_btn = gr.Button("πŸ‘ would read")
        downvote_btn = gr.Button("πŸ‘Ž wouldn't read")

    vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)

    def generate_and_show(prompt):
        return gr.Markdown.update(value="Generating..."), gr.Row(visible=False)

    def show_voting_buttons(blurb):
        return blurb, gr.Row(visible=True)

    generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
        generate_and_show, inputs=prompt_state, outputs=[blurb_output, voting_row]
    ).then(generate_blurb, inputs=prompt_state, outputs=blurb_output).then(
        show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
    )

    upvote_btn.click(
        log_blurb_and_vote,
        inputs=[
            prompt_state,
            blurb_output,
            gr.Textbox(value="upvote", visible=False),
            login_btn,
        ],
        outputs=vote_output,
    )
    downvote_btn.click(
        log_blurb_and_vote,
        inputs=[
            prompt_state,
            blurb_output,
            gr.Textbox(value="downvote", visible=False),
            login_btn,
        ],
        outputs=vote_output,
    )

if __name__ == "__main__":
    demo.launch(debug=True)