fschwartzer's picture
Update app.py
de6d203 verified
raw
history blame
2.95 kB
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime
# Load the CSV file and ensure proper formatting
df = pd.read_csv("anomalies.csv", quotechar='"')
# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)
# Truncate long strings in 'Group' column if necessary
df['Group'] = df['Group'].str.slice(0, 255)
# Function to generate a response using the TAPAS model
def response(user_question, df):
a = datetime.datetime.now()
# Initialize the TAPAS model
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
# Debugging information
print("DataFrame shape:", df.shape)
print("DataFrame head:\n", df.head())
print("User question:", user_question)
# Query the TAPAS model
try:
answer = tqa(table=df, query=user_question)['answer']
except IndexError as e:
print(f"Error: {e}")
answer = "Error occurred: " + str(e)
query_result = {
"Resposta": answer
}
b = datetime.datetime.now()
print("Time taken:", b - a)
return query_result
# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)
# Chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# Input box for user question
user_question = st.text_input("Escreva sua questΓ£o aqui:", "")
if user_question:
# Add human emoji when user asks a question
st.session_state['history'].append(('πŸ‘€', user_question))
st.markdown(f"**πŸ‘€ {user_question}**")
# Generate the response
bot_response = response(user_question, df)["Resposta"]
# Add robot emoji when generating response and align to the right
st.session_state['history'].append(('πŸ€–', bot_response))
st.markdown(f"<div style='text-align: right'>**πŸ€– {bot_response}**</div>", unsafe_allow_html=True)
# Clear history button
if st.button("Limpar"):
st.session_state['history'] = []
# Display chat history
for sender, message in st.session_state['history']:
if sender == 'πŸ‘€':
st.markdown(f"**πŸ‘€ {message}**")
elif sender == 'πŸ€–':
st.markdown(f"<div style='text-align: right'>**πŸ€– {message}**</div>", unsafe_allow_html=True)