File size: 12,210 Bytes
be293db
9ec7c08
8b77729
1cc3978
be293db
827b7ef
08a65ff
 
8860d0f
 
 
 
 
 
 
 
6356cbd
9ec7c08
 
160959f
be293db
 
 
 
 
 
827b7ef
 
 
 
 
 
 
 
 
 
 
 
be293db
 
 
 
 
9ec7c08
8b77729
 
 
 
 
 
 
 
9ec7c08
8b77729
 
 
 
26742b2
 
8b77729
be293db
08a65ff
26742b2
 
 
 
 
 
 
 
 
827b7ef
 
 
 
9242f47
26742b2
 
827b7ef
1cc3978
 
9242f47
 
827b7ef
1cc3978
827b7ef
 
1cc3978
 
9242f47
 
9ec7c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08a65ff
 
05edfc3
c4882f0
05edfc3
 
26742b2
8b77729
9ec7c08
 
 
08a65ff
 
be293db
 
 
 
 
08a65ff
 
 
be293db
cca065e
be293db
08a65ff
be293db
 
 
326ad7e
 
8b77729
326ad7e
9ec7c08
 
 
 
8b77729
9ec7c08
 
 
326ad7e
9ec7c08
08a65ff
326ad7e
9ec7c08
326ad7e
9ec7c08
e25cf02
326ad7e
9ec7c08
 
 
326ad7e
 
c4882f0
827b7ef
 
 
 
 
be293db
326ad7e
26742b2
 
326ad7e
 
827b7ef
 
 
 
 
326ad7e
 
26742b2
326ad7e
26742b2
 
 
8b77729
be293db
e25cf02
be293db
387d8f1
 
 
 
 
 
 
 
 
be293db
9ec7c08
 
 
08a65ff
326ad7e
26742b2
 
08a65ff
26742b2
9242f47
08a65ff
 
8860d0f
326ad7e
26742b2
8860d0f
326ad7e
9242f47
 
be293db
326ad7e
8860d0f
08a65ff
 
be293db
8860d0f
 
326ad7e
 
08a65ff
8b77729
9ec7c08
 
 
08a65ff
326ad7e
26742b2
 
08a65ff
26742b2
c4882f0
 
08a65ff
8b77729
326ad7e
8860d0f
08a65ff
 
be293db
8860d0f
326ad7e
8b77729
827b7ef
 
 
 
 
 
 
 
 
 
 
 
 
f208d84
827b7ef
08a65ff
2f4f38e
8b77729
9ec7c08
 
 
 
08a65ff
326ad7e
26742b2
 
08a65ff
26742b2
c4882f0
08a65ff
326ad7e
26742b2
 
08a65ff
26742b2
c4882f0
08a65ff
8b77729
26742b2
9ec7c08
 
 
326ad7e
26742b2
 
08a65ff
c4882f0
26742b2
c4882f0
08a65ff
326ad7e
08a65ff
 
 
be293db
08a65ff
326ad7e
26742b2
9ec7c08
 
 
 
08a65ff
26742b2
08a65ff
26742b2
08a65ff
acb47d3
26742b2
 
08a65ff
26742b2
 
08a65ff
26742b2
acb47d3
 
26742b2
 
 
08a65ff
26742b2
9ec7c08
be293db
acb47d3
 
326ad7e
8b77729
9ec7c08
 
 
 
 
 
 
 
 
 
 
9242f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b77729
 
9242f47
cca065e
08a65ff
 
 
 
1cc3978
08a65ff
 
 
8b77729
827b7ef
 
05edfc3
 
 
 
 
827b7ef
 
 
8b77729
08a65ff
326ad7e
 
1cc3978
 
 
 
326ad7e
08a65ff
1cc3978
 
 
 
827b7ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import json
import logging
from pathlib import Path
from typing import Callable, Dict, List, Tuple

import langcodes as lc
import streamlit as st
import yaml
from datasets.utils.metadata import (
    DatasetMetadata,
    known_creators,
    known_licenses,
    known_multilingualities,
    known_size_categories,
    known_task_ids,
)

from apputils import new_state

st.set_page_config(
    page_title="HF Dataset Tagging App",
    page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
    layout="wide",
    initial_sidebar_state="auto",
)

# XXX: restyling errors as streamlit does not respect whitespaces on `st.error` and doesn't scroll horizontally, which
#   generally makes things easier when reading error reports
st.markdown(
    """
<style>
    div[role=alert] { overflow-x: scroll}
    div.stAlert p { white-space: pre }
</style>
""",
    unsafe_allow_html=True,
)

########################
## Helper functions
########################


def load_ds_datas() -> Dict[str, Dict[str, Dict]]:
    metada_exports = sorted(
        [f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")],
        key=lambda f: f.lstat().st_mtime,
        reverse=True,
    )
    if len(metada_exports) == 0:
        raise ValueError("need to run ./build_metada_file.py at least once")
    with metada_exports[0].open() as fi:
        logging.info(f"loaded {metada_exports[0]}")
        return json.load(fi)


def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]:
    if vals is None:
        return [], []
    return [v for v in vals if v in okset], [v for v in vals if v not in okset]


def multiselect(
    w: st.delta_generator.DeltaGenerator,
    title: str,
    markdown: str,
    values: List[str],
    valid_set: List[str],
    format_func: Callable = str,
):
    valid_values, invalid_values = split_known(values, valid_set)
    w.markdown(f"#### {title}")
    if len(invalid_values) > 0:
        w.markdown("Found the following invalid values:")
        w.error(invalid_values)
    return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func, key=title)


def validate_dict(w: st.delta_generator.DeltaGenerator, state_dict: Dict):
    try:
        DatasetMetadata(**state_dict)
        if not state_dict.get("pretty_name"):
            raise ValueError("Please specify a non-empty Dataset name.")
        w.markdown("βœ… This is a valid tagset! πŸ€—")
    except Exception as e:
        w.markdown("❌ This is an invalid tagset, here are the errors in it:")
        w.error(e)


def map_num_examples_to_size_category(n: int) -> str:
    if n < 0:
        size_cat = "unknown"
    elif n < 1000:
        size_cat = "n<1K"
    elif n < 10000:
        size_cat = "1K<n<10K"
    elif n < 100000:
        size_cat = "10K<n<100K"
    elif n < 1000000:
        size_cat = "100K<n<1M"
    elif n < 10000000:
        size_cat = "1M<n<10M"
    elif n < 100000000:
        size_cat = "10M<n<100M"
    elif n < 1000000000:
        size_cat = "100M<n<1B"
    elif n < 10000000000:
        size_cat = "1B<n<10B"
    elif n < 100000000000:
        size_cat = "10B<n<100B"
    elif n < 1000000000000:
        size_cat = "100B<n<1T"
    else:
        size_cat = "n>1T"
    return size_cat


def is_state_empty(state: Dict[str, List]) -> bool:
    return sum(len(v) if v is not None else 0 for v in state.values()) == 0


state = new_state()
datasets_md = load_ds_datas()
dataset_ids = list(datasets_md.keys())
dataset_id_to_metadata = {name: mds["metadata"] for name, mds in datasets_md.items()}
dataset_id_to_infos = {name: mds["infos"] for name, mds in datasets_md.items()}


########################
## Dataset selection
########################


st.sidebar.markdown(
    """
# HuggingFace Dataset Tagger

This app aims to make it easier to add structured tags to the datasets present in the library.

"""
)


queryparams = st.experimental_get_query_params()
preload = queryparams.get("preload_dataset", list())
preloaded_id = None
initial_state = None
initial_infos, initial_info_cfg = None, None
dataset_selector_index = 0

if len(preload) == 1 and preload[0] in dataset_ids:
    preloaded_id, *_ = preload
    initial_state = dataset_id_to_metadata.get(preloaded_id)
    initial_infos = dataset_id_to_infos.get(preloaded_id)
    initial_info_cfg = next(iter(initial_infos)) if initial_infos is not None else None  # pick first available config
    state = initial_state or new_state()
    dataset_selector_index = dataset_ids.index(preloaded_id)

preloaded_id = st.sidebar.selectbox(
    label="Choose dataset to load tag set from", options=dataset_ids, index=dataset_selector_index
)

leftbtn, rightbtn = st.sidebar.columns(2)
if leftbtn.button("pre-load"):
    initial_state = dataset_id_to_metadata[preloaded_id]
    initial_infos = dataset_id_to_infos[preloaded_id]
    initial_info_cfg = next(iter(initial_infos))  # pick first available config
    state = initial_state or new_state()
    st.experimental_set_query_params(preload_dataset=preloaded_id)
if not is_state_empty(state):
    if rightbtn.button("flush state"):
        state = new_state()
        initial_state = None
        preloaded_id = None
        st.experimental_set_query_params()

if preloaded_id is not None and initial_state is not None:
    st.sidebar.markdown(
        f"""
---
The current base tagset is [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id})
"""
    )
    validate_dict(st.sidebar, initial_state)
    st.sidebar.markdown(
        f"""
Here is the matching yaml block:

```yaml
{yaml.dump(initial_state)}
```
"""
    )


leftcol, _, rightcol = st.columns([12, 1, 12])

#
# DATASET NAME
#
leftcol.markdown("### Dataset name")
state["pretty_name"] = leftcol.text_area(
    "Pick a nice descriptive name for the dataset",
)



#
# TASKS
#
leftcol.markdown("### Supported tasks")
state["task_categories"] = multiselect(
    leftcol,
    "Task category",
    "What categories of task does the dataset support?",
    values=state["task_categories"],
    valid_set=sorted(list(known_task_ids.keys())),
)
task_specifics = []
for task_category in state["task_categories"]:
    specs = multiselect(
        leftcol,
        f"Specific _{task_category}_ tasks",
        f"What specific tasks does the dataset support?",
        values=[ts for ts in (state["task_ids"] or []) if ts in known_task_ids[task_category].get("subtasks", [])],
        valid_set=known_task_ids[task_category].get("subtasks", []),
    )
    if "other" in specs:
        other_task = leftcol.text_input(
            "You selected 'other' task. Please enter a short hyphen-separated description for the task:",
            value="my-task-description",
        )
        leftcol.write(f"Registering {task_category}-other-{other_task} task")
        specs[specs.index("other")] = f"{task_category}-other-{other_task}"
    task_specifics += specs
state["task_ids"] = task_specifics


#
# LANGUAGES
#
leftcol.markdown("### Languages")
state["multilinguality"] = multiselect(
    leftcol,
    "Monolingual?",
    "Does the dataset contain more than one language?",
    values=state["multilinguality"],
    valid_set=list(known_multilingualities.keys()),
    format_func=lambda m: f"{m} : {known_multilingualities[m]}",
)

if "other" in state["multilinguality"]:
    other_multilinguality = leftcol.text_input(
        "You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
        value="my-multilinguality",
    )
    leftcol.write(f"Registering other-{other_multilinguality} multilinguality")
    state["multilinguality"][state["multilinguality"].index("other")] = f"other-{other_multilinguality}"

valid_values, invalid_values = list(), list()
for langtag in state["languages"]:
    try:
        lc.get(langtag)
        valid_values.append(langtag)
    except:
        invalid_values.append(langtag)
leftcol.markdown("#### Languages")
if len(invalid_values) > 0:
    leftcol.markdown("Found the following invalid values:")
    leftcol.error(invalid_values)

langtags = leftcol.text_area(
    "What languages are represented in the dataset? expected format is BCP47 tags separated for ';' e.g. 'en;fr'",
    value=";".join(valid_values),
)
state["languages"] = langtags.strip().split(";") if langtags.strip() != "" else []


#
# DATASET CREATORS & ORIGINS
#
leftcol.markdown("### Dataset creators")
state["language_creators"] = multiselect(
    leftcol,
    "Data origin",
    "Where does the text in the dataset come from?",
    values=state["language_creators"],
    valid_set=known_creators["language"],
)
state["annotations_creators"] = multiselect(
    leftcol,
    "Annotations origin",
    "Where do the annotations in the dataset come from?",
    values=state["annotations_creators"],
    valid_set=known_creators["annotations"],
)


#
# LICENSES
#
state["licenses"] = multiselect(
    leftcol,
    "Licenses",
    "What licenses is the dataset under?",
    valid_set=list(known_licenses.keys()),
    values=state["licenses"],
    format_func=lambda l: f"{l} : {known_licenses[l]}",
)
if "other" in state["licenses"]:
    other_license = st.text_input(
        "You selected 'other' type of license. Please enter a short hyphen-separated description:",
        value="my-license",
    )
    st.write(f"Registering other-{other_license} license")
    state["licenses"][state["licenses"].index("other")] = f"other-{other_license}"


#
# LINK TO SUPPORTED DATASETS
#
pre_select_ext_a = []
if "original" in state["source_datasets"]:
    pre_select_ext_a += ["original"]
if any([p.startswith("extended") for p in state["source_datasets"]]):
    pre_select_ext_a += ["extended"]
state["source_datasets"] = multiselect(
    leftcol,
    "Relations to existing work",
    "Does the dataset contain original data and/or was it extended from other datasets?",
    values=pre_select_ext_a,
    valid_set=["original", "extended"],
)

if "extended" in state["source_datasets"]:
    pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended|")]
    extended_sources = multiselect(
        leftcol,
        "Linked datasets",
        "Which other datasets does this one use data from?",
        values=pre_select_ext_b,
        valid_set=dataset_ids + ["other"],
    )
    # flush placeholder
    state["source_datasets"].remove("extended")
    state["source_datasets"] += [f"extended|{src}" for src in extended_sources]


#
# SIZE CATEGORY
#
leftcol.markdown("### Size category")
logging.info(initial_infos[initial_info_cfg]["splits"] if initial_infos is not None else 0)
initial_num_examples = (
    sum([dct.get("num_examples", 0) for _split, dct in initial_infos[initial_info_cfg].get("splits", dict()).items()])
    if initial_infos is not None
    else -1
)
if initial_num_examples >= 0:
    initial_size_categories = [map_num_examples_to_size_category(initial_num_examples)]
else:
    initial_size_categories = []
current_size_cats = multiselect(
    leftcol,
    f"Size category",
    f"How many samples are there in the dataset?",
    values=initial_size_categories,
    valid_set=known_size_categories,
)
if initial_size_categories:
    leftcol.markdown(f"Computed size category from automatically generated dataset info to: `{initial_size_categories}`")
prev_size_cats = state.get("size_categories") or []
ok, nonok = split_known(prev_size_cats, known_size_categories)
if len(nonok) > 0:
    leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
state["size_categories"] = current_size_cats


########################
## Show results
########################

rightcol.markdown(
    f"""
### Finalized tag set

"""
)
if is_state_empty(state):
    rightcol.markdown("❌ This is an invalid tagset: it's empty!")
else:
    validate_dict(rightcol, state)


rightcol.markdown(
    f"""

```yaml
{yaml.dump(state)}
```
---
#### Arbitrary yaml validator

This is a standalone tool, it is useful to check for errors on an existing tagset or modifying directly the text rather than the UI on the left.
""",
)

yamlblock = rightcol.text_area("Input your yaml here")
if yamlblock.strip() != "":
    inputdict = yaml.safe_load(yamlblock)
    validate_dict(rightcol, inputdict)